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Abstract. The effective action of the linear meson model generates the mesonic n–point functions with
all quantum effects included. Based on chiral symmetry and a systematic quark mass expansion we derive
relations between meson masses and decay constants. The model “predicts” values for fη and fη′ which
are compatible with observation. This involves a large momentum dependent η–η′ mixing angle which is
different for the on–shell decays of the η and the η′. We also present relations for the masses of the 0++

octet. The parameters of the linear meson model are computed and related to cubic and quartic couplings
among pseudoscalar and scalar mesons. We also discuss extensions for vector and axialvector fields. In a
good approximation the exchange of these fields is responsible for the important nonminimal kinetic terms
and the η–η′ mixing encountered in the linear meson model.

1 Introduction

In quantum field theory all effects of quantum fluctuations
are incorporated in the effective action Γ , the generat-
ing functional of one–particle irreducible Green functions.
From the knowledge of these amplitudes the information
about particle masses and decay rates, scattering cross
sections, etc. can be extracted in a straightforward man-
ner. In particular, the effective action for the mesons in the
lowest mass pseudoscalar octet contains all information on
the physics involving only π±, π0, K±, K0, K

0
and η. We

emphasize that all quantum fluctuation effects are already
included in the effective action and no further integration
over fluctuations has to be performed1! Without any fur-
ther input the effective action can be viewed simply as a
coherent description of the information gathered by other
means about scattering amplitudes, decay rates, etc. In a
very general context it contains already predictive power
following from constraints which describe the analyticity
properties of the momentum dependence of Green func-
tions or general features like convexity. Furthermore, all
exact symmetry relations are automatically embodied in
the symmetries of Γ or the related Ward identities.

Our aim is to find relations among the n–point func-
tions described by Γ which go beyond exact symmetry
properties and general constraints. This allows to estab-
lish relations among physical quantities and to make pre-
dictions. (For strong interactions these “predictions” are

? Supported by the Deutsche Forschungsgemeinschaft
1 “Effective actions” are also often used in a different con-

text where only some degrees of freedom are integrated out
whereas fluctuations of the remaining degrees of freedom still
need to be computed. This is, e.g., the typical setting of chiral
perturbation theory and differs from our approach

more often “postdictions”, but they permit an understand-
ing of already measured quantities.) In the case of meson
physics the ultimate goal is a computation of the effec-
tive mesonic action Γ from basic QCD, involving as free
parameters only αs(MZ) and the current quark masses.
We will be concerned here with more modest partial an-
swers which follow from a few simple assumptions about
the general properties of the mesonic effective action.

A lot of information can be extracted from approxi-
mate chiral SUL(3) × SUR(3) symmetry. In the absence
of current quark masses for the up, down and strange
quark this is an exact symmetry of the QCD Lagrangian
which is believed to be broken spontaneously by the chiral
condensate to the vector subgroup SUV (3). Considering
the explicit symmetry breaking by the quark masses mu,
md and ms as a small effect and expanding the Green
functions in powers of these masses gives rise to the very
successful chiral perturbation theory [1,2] in the context
of the nonlinear sigma model for the lowest 0−+ octet.
In the present paper this approach is extended to a lin-
ear meson or sigma model [3] including also fields for the
η′, the lowest lying scalar 0++ octet and a scalar singlet.
(The latter is often called “σ particle”, and we use in this
work the terms “linear meson model” and “linear sigma
model” synonymously.) Together with the 0−+ octet these
fields are combined into a complex 3 × 3 matrix Φ which
transforms as a linear (3,3) representation with respect
to SUL(3) × SUR(3). The corresponding mesons can be
interpreted as quark–antiquark bound states qLqR [4]. In
the absence of quark masses spontaneous chiral symmetry
breaking arises through a nonvanishing vacuum expecta-
tion value of the scalar singlet described by the real part
of TrΦ. Nonvanishing quark masses also enforce nonzero
expectation values of the diagonal part of the scalar octet.
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In this context the possible information from approximate
chiral symmetry breaking is twofold: First, there are a few
simple linear relations which can be understood easily on
the basis of representation theory. A typical example is
a Gell-Mann–Okubo type mass relation for the particles
in the 0++ octet. This kind of relation could equally well
be understood in the context of an extended nonlinear
model including the η′ and the scalar octet. Beyond this,
the linear meson model may imply further constraints for
the free parameters remaining in a nonlinear model to a
given order in the quark mass expansion. This type of
constraint arises typically from nonlinearities in the map
from the linear to the nonlinear sigma model and is diffi-
cult to classify by representation theory. We observe that
the effective action of the nonlinear sigma model for the
pseudoscalar octet is completely contained in the effective
action for the linear meson model, once restricted to the
appropriate degrees of freedom. One may therefore hope
to extract some information on those parameters of the
nonlinear sigma model which appear in higher orders in
the quark mass expansion.

The predictive power of the linear model is greatly en-
hanced if approximate chiral symmetry is combined with
additional assumptions:

(i) The derivative expansion assumes for the inverse prop-
agator that the deviation from a momentum depen-
dence ∼ q2 + m2 is only a small effect. This should
hold in a range of q2 in the vicinity of the zero at
q2 = −m2. It amounts to neglecting terms in the ef-
fective action which contain more than two deriva-
tives or treating the deviations of the inverse propa-
gators from q2 +m2 as small corrections in a system-
atic way. For a determination of masses, mixing angles
or decay widths only Green functions with on–shell
external momenta are of interest. Hence, it is natu-
ral to expand the proper vertices around external mo-
menta corresponding to appropriately chosen “average
masses” for each SUV (3) multiplet. For many observ-
ables this leads to a derivative expansion which for-
mally corresponds to an expansion in powers of quark
masses. It should be stressed, though, that non–analy-
ticities due to multi–particle thresholds clearly restrict
the range of validity of this expansion.

(ii) The expansion in the chiral condensate assumes that
the typical mass scale relevant for spontaneous chi-
ral symmetry breaking is small as compared to the
typical strong interaction mass scales, as, for instance,
the string tension or glueball masses. The discussion
of the relevant scales is somewhat subtle (cf. Sect. 10).
It is often sufficient to assume that the scale of spon-
taneous chiral symmetry breaking is not large as com-
pared to other strong interaction scales. In the present
paper we do not exploit explicitly this expansion but
rather use it in order to establish reasonable ranges for
some parameters. We emphasize in this context that
the present paper makes no polynomial expansion of
the effective action around Φ = 0. We will instead ex-
pand in the difference Φ−〈Φ〉 with 〈Φ〉 the expectation
value of Φ in the presence of spontaneous chiral sym-

metry breaking and equal quark masses. The latter is
justified by the observation that a given order in the
quark mass expansion only involves a maximal power
of Φ−〈Φ〉. Within the expansion around 〈Φ〉 the chiral
condensate σ0 ∼ Tr 〈Φ〉 appears as a free parameter.
It should be noted that the validity of a polynomial
expansion around Φ = 0 would automatically generate
a systematic expansion in powers of σ0. It is, however,
not necessary for this purpose.

Both, the derivative expansion and the expansion in σ0
can also be motivated by the observation that a classical
linear sigma model is in the class of renormalizable theo-
ries and remains there if it is coupled to quarks. (We ne-
glect here the large–distance nonlocalities in the effective
quark interactions reflecting confinement induced by the
gluonic degrees of freedom.) Quantum fluctuations have
then the tendency to induce a flow of the effective cou-
plings towards the Gaussian fixed point (triviality) in the
vicinity of which the derivative and polynomial expansions
become valid2. Because of nonvanishing meson masses the
running extends, however, at most over a range somewhere
inbetween the GeV scale below which the mesons form as
quark bound states [5] and approximately 100 MeV where
the pion mass acts an an infrared cutoff (with graduation
because of the rich scalar mass spectrum). Nevertheless,
the renormalization effects may be substantial due to the
existence of strong effective couplings [6] such that the
general form of the effective action may already be influ-
enced by the vicinity of the Gaussian fixed point. We do
not expect that the derivative expansion or the expan-
sion in the chiral condensate σ0 converge very fast under
all circumstances. The associated dimensionless expansion
parameters are simply not very small. This also holds for
the expansion in the strange quark mass in contrast to
an expansion in mu and md. We will discuss these issues
in detail and find that the “rate of convergence” depends
quite significantly on the physical quantity considered. As
a general rule, the convergence is much better for the fla-
vored mesons than for the non–flavored ones.

(iii) The leading mixing approximation attributes the
dominant deviation from the low order results of the
quark mass or the derivative expansion to a mixing of
states. A prominent example is the η–η′ mixing which
indeed turns out to be responsible for the compara-
tively slow convergence of the straightforward quark
mass expansion in this sector. Another important fea-
ture in this context is the “partial Higgs effect” which
describes the mixing with the 0−+ states contained in
the divergence ∂µρ

µ
A of the axialvector fields.

The smallest common denominator of all these consid-
erations and the minimal starting point for any systematic
study of the linear meson model assumes an effective ac-
tion consisting of the most general effective potential for

2 Nonlocal quark interactions related to confinement coun-
teract this tendency for very low momentum scales. They in-
fluence the mesons only indirectly and are suppressed by a
nonvanishing constituent quark mass
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Φ and the most general kinetic term involving two deriva-
tives. By this we mean that all invariants consistent with
SUL(3) × SUR(3) symmetry have to be included which
contribute to a given order in the quark mass expansion. It
is crucial in this respect that the most general kinetic term
in the effective Lagrangian is not simply Zϕ Tr ∂µΦ

†∂µΦ.
There are other important invariants involving two deriva-
tives as, for example, a term

1
8
X−

ϕ

{
Tr
(
Φ†∂µΦ− ∂µΦ

†Φ
) (
Φ†∂µΦ− ∂µΦ†Φ

)
+ Tr

(
Φ∂µΦ

† − ∂µΦΦ
†) (Φ∂µΦ† − ∂µΦΦ†)} (1.1)

After chiral symmetry breaking this term induces different
wave function renormalizations for the pseudoscalar and
the scalar octets, a momentum dependent mixing of η and
η′ and similar effects which all turn out to be quantita-
tively important! We emphasize that the symmetry break-
ing effects in the wave function renormalizations Zi for the
various mesons (which are described by the kinetic terms)
are as important for an understanding of the meson mass
spectrum as the “unrenormalized mass terms” M

2
i (de-

scribed by the effective potential). With effective inverse
propagators ∼ Ziq

2 + M
2
i the physical masses are given

as Mi = M iZ
−1/2
i . A study of the mass splitting between

the scalar and the pseudoscalar octet involves the effect
of chiral symmetry breaking on M

2
i and Zi. We therefore

investigate the kinetic terms in the same way as the ef-
fective potential. This explains most of the differences of
our results with earlier investigations [7]–[14] where chiral
symmetry breaking in the kinetic terms was neglected.

The present paper is devoted to a systematic study of
the effective action of the linear meson model based on the
considerations discussed above. For the pseudoscalar sec-
tor we take as phenomenological input Mπ± , MK± , MK0 ,
Mη′ , fπ and fK± . Using this we compute partial decay
rates for the π0, η and η′ into two photons as parame-
terized by fπ0 , fη and fη′ as well as other quantities of
interest. The perhaps most striking outcome is that Mη

as well as the decay constants fη and fη′ are determined
essentially as functions of only one additional parameter,
with a rather weak dependence on the other couplings
present in the linear sigma model. Fixing this parameter
by the measured value Mη = 547.5 MeV we predict to
first order in the quark mass expansion and first order in
the derivative expansion

fπ0

fπ
' 1.00

fη

fπ
' 1.23

fη′

fπ
' 0.91 . (1.2)

Taking into account the theoretical uncertainties these re-
sults are in satisfactory agreement with the experimen-
tal observations (fπ0/fπ)exp = 1.00 ± 0.04, (fη/fπ)exp =
1.06 ± 0.05 and (fη′/fπ)exp = 0.81 ± 0.02. In view of the

lowest order result for vanishing quark masses, (fη/fπ)(0)

=
√

3, (fη′/fπ)(0) =
√

3/8 this is rather remarkable. The
values of Mη, fη and fη′ for different parameters of the
model can be found in Sects. 7, 9 and 13. One can get
an idea about the “robustness” of the estimate (1.2) from
the figures and tables of these sections. We also discuss
the masses of the mesons in the lowest lying 0++ octet
(Sect. 11). We find that the scalar partner of the η has a
typical mass of (1300 − 1400) MeV and should be associ-
ated with the resonance f0(1300) [19]. Large mixing effects
with two–kaon or four–quark states are characteristic for
the isotriplet a0(980). The resonance a0(980) may actu-
ally be dominantly a two–kaon state and in this case the
model suggests a further isotriplet resonance with a mass
around 1300 MeV. It may be identified with the reported
resonance a0(1320) [15].

Four main lines enter our systematic analysis:
(1) The relations between the pseudoscalar meson

mass differences within a given multiplet and the differ-
ences in decay constants fK − fπ or fK± − fK0 involve
the couplings between two pseudoscalar octets and one or
more scalar octets. Up to a wave function renormaliza-
tion the differences of decay constants correspond to the
expectation values 〈h〉 of the diagonal fields in the scalar
octet. Lowest order mass differences follow from the cubic
couplings ∼ Tr(m2h) once the expectation value of h is
inserted. (Here m denotes the traceless hermitean matrix
of pseudoscalar octet fields and h that of the scalar octet.)
Similarly higher order corrections arise from quartic cou-
plings as Tr(mhmh) and so on. The quark mass expan-
sion is closely related to an expansion in powers of the
SUV (3)–breaking expectation value 〈h〉. This mechanism
is described in detail in Sects. 2 and 3. As a byproduct
of our analysis one also gains information on the cubic
and quartic couplings involving pseudoscalars and scalars
which are relevant for the decay of a scalar into two pseu-
doscalars etc.

(2) We formulate the quark mass expansion as a power
series in the parameters ∆u, ∆d, ∆s which measure the
deviation of the scalar expectation values from their values
for zero quark masses. In particular, ∆s − 1

2 (∆u +∆d) ∼
fK − fπ corresponds to the SUV (3)–breaking induced by
the mass of the strange quark, and ∆u −∆d ∼ fK± − fK0

measures the amount of isospin breaking. In our analy-
sis we actually never need to determine the current quark
masses. Our “predictions” involve directly the relations
between meson masses and decay constants. Within the
language of a general SUV (3) symmetric model for m, h,
etc. the essential ingredient is the determination of the
cubic and quartic couplings between scalars and pseu-
doscalars as well as the wave function renormalizations
from the couplings of the linear meson model. This is done
in Sect. 4.

A systematic expression of the pseudoscalar octet mass
splitting to order ∆ needs the identification of those terms
of the effective potential which contribute to this order
whereas the quark mass corrections to the kinetic term
can be neglected. Similarly, an estimate to order ∆2 (cor-
responding to second order in the quark mass expansion)
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involves the effective potential contribution to order ∆2,
corrections to the kinetic terms to order ∆ and a lowest
order estimate of the terms involving four derivatives. We
find that the apparent convergence of the expansion in
∆ is quite satisfactory for the flavored pseudoscalars π±,
K±, K0, K

0
and the π0. On the other hand, the formal

series in ∆ does not converge very well in the η–η′ sector
if the singlet mass term generated by the chiral anomaly
is, as usual, considered as a quantity ∼ O(1). The reason
are the relatively large mixing effects which are formally
of the order ∆. This is combined with the observation that
a zeroth order mass term for the η′ (without mixing) is
considerably smaller than the physical η′ mass and actu-
ally not so much larger than the zeroth order mass of the
η. We wish to stress that the apparent convergence of the
∆–expansion in the η–η′ sector improves substantially if
one includes systematically all effects to a given order in
∆ for all elements of the 2 × 2 matrix which describes the
inverse propagator of the η–η′ system. After diagonaliza-
tion this procedure amounts for the mass eigenvalues to a
partial resummation of terms which are formally of higher
order in ∆. We believe that these convergence properties
of the quark mass expansion are quite general: The series
converges very well only in situations without large effects
from mixing of states. If mixing is important, a good con-
vergence can only be obtained if the ∆–corrections are
retained for all elements in the relevant matrix. We en-
counter a very similar situation if we want to interpret
the a0(980) as the isotriplet member of the scalar octet
described by h.

For a computation of differences in decay constants
like fK − fπ the lowest order in the quark mass expansion
requires corrections of order∆ both for the effective poten-
tial and the kinetic terms. This implies that all relations
between meson mass differences and decay constants need
to lowest nontrivial order also the kinetic terms to order
∆. The only exceptions are the Gell-Mann–Okubo mass
relations to linear order in ∆. They do not involve the
decay constants and the leading quark mass corrections
to the kinetic terms cancel for these relations. All other
“predictions” of the model involve the quark mass cor-
rections to the kinetic term. In order to be able to study
separately the quark mass expansion and the derivative
expansion we have split our systematic exploration of the
linear meson model to order ∆ into several parts. Sects. 4
and 5 deal with the ∆–expansion of the effective poten-
tial. In Sect. 6 we supplement these considerations by a
general discussion of corrections ∼ ∆ and higher deriva-
tive contributions to the kinetic terms. The quark mass
corrections to the kinetic terms are computed within the
linear meson model in Sect. 8 and the higher derivative
contributions are estimated in Sect. 12.

(3) The expansion in powers of ∆ is a self–contained
systematic formalism. Nevertheless, large mixing effects
sometimes prevent a fast convergence of the series. One
of the examples encountered in this work is the relatively
large momentum dependent off–diagonal element in the
inverse η–η′ propagator. In turn, the sign and size of this
element can be explained by the mixing of the pseudoscalar

octet m and the singlet p with the states corresponding
to the divergence of the axialvector fields ∂µρ

µ
A. These

states have the same quantum numbers and the mixing
corresponds to the so called “partial Higgs effect”. We
have performed in Appendix B the corresponding analy-
sis of the vector and axialvector system coupled to pseu-
doscalars and scalars and estimated the contribution from
the exchange of ∂µρ

µ
A to the off–diagonal element in the

η–η′ inverse propagator. This estimate coincides rather
well with the value that leads to realistic numbers for
Mη, fη and fη′ ! This is rather encouraging since the large
O(∆) effects find now a natural explanation. Quite gener-
ally, our results lead to the picture that the ∆–expansion
as well as the derivative expansion converge well once a
large enough basis of states is included. Integrating out
such states, however, can lead to large coefficients in the
formal ∆–expansion for the remaining states and there-
fore to a slow convergence. Keeping the additional states
or integrating them out without a further truncation of
the series to given order in ∆ is equivalent to a resumma-
tion of higher order terms from the point of view of the
formal ∆–expansion. This improves the convergence sub-
stantially. We therefore have given a general discussion of
mixing effects in Appendix C, where we also identify the
most prominent mixings relevant in our context.

(4) The effective action Γ includes all quantum fluc-
tuations. If Γ is known no further loop calculations are
necessary. Nevertheless, it is often useful to estimate the
contributions of fluctuations for certain invariants con-
tained in Γ . An example are the contributions to higher
derivative terms which reflect the deviation of an inverse
propagator G−1(q2) from the leading momentum depen-
dence Zq2+M

2
. Recently, a reformulation of perturbation

theory was based on effective vertices and propagators
instead of the classical ones [16]. Here, this means that
the contributions of quantum fluctuations to the differ-
ence G−1(q2) − (Zq2 +M

2
) can be computed in terms of

Z, M
2

and appropriate effective cubic couplings γi. Since
the effective vertices have been determined by our analy-
sis we can give in Sect. 12 a quantitative estimate of the
contributions from scalar and pseudoscalar fluctuations to
the higher derivative terms. They turn out to be substan-
tially smaller than those arising from mixing effects with
other states.

Besides its main purpose of a systematic discussion of
meson masses and decay constants within the framework
of the linear meson model this work also constitutes the
basis for several interesting developments: Recently, the
parameters of the two–flavor meson model were estimated
from a solution of nonperturbative flow equations [6]. The
resulting values for fπ and the chiral condensate

〈
ψψ
〉

en-
courage an extension of this approach to three flavors. In
this case the nonvanishing mass of the strange quark plays
an important quantitative role and needs to be included.
The results of such a future estimate of the parameters of
the linear meson model can then be compared with the
values infered in the present work from a phenomenolog-
ical analysis. The present results also give an idea which
invariants are important and should be retained in the nec-
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essary truncation of the exact nonperturbative flow equa-
tion.

A determination of the parameters of the linear sigma
model in the zero temperature ground state is the starting
point for any analysis of the high temperature behavior of
this model. This is relevant for the QCD phase transition
in the early universe and for ongoing and future heavy
ion collision experiments. Within the linear meson model
the temperature dependence can be studied along similar
lines as in [17]. On a crude qualitative level one may also
use a mean field approximation [7]–[10]. The temperature
dependence of meson masses – in particular the vector
mesons – may be experimentally observable in heavy ion
collisions. We should point out, however, that such a study
remains reliable only as long as 2πT is smaller than the
compositeness scale above which a mesonic description of
strong interaction physics becomes invalid.

Finally, we have not exploited in this work the informa-
tion we have gained concerning cubic and quartic meson
couplings. Especially for the extension of our model to in-
clude vector and axialvector mesons (Appendix B) these
couplings determine the decay rates and branching ratios.
They therefore contain a whole lot of additional “predic-
tions” that can be compared with experiment. We plan to
come back to all these issues in future work.

2 Meson masses to linear order

In the limit of vanishing quark masses the chiral sym-
metry SUL(3) × SUR(3) is spontaneously broken to the
vector–like SUV (3) subgroup. With respect to this sym-
metry breaking the 18 real fields contained in the com-
plex (3,3) representation decompose into a pseudoscalar
octet plus singlet and a scalar octet plus singlet. The
pseudoscalar octet is associated with the eight (pseudo–
)Goldstone bosons π±, π0, K±, K0, K

0
, η and the pseu-

doscalar singlet with the η′ particle. The scalars comprise
the isotriplet a0, the strange scalarsK∗±

0 ,K∗0
0 ,K

∗0
0 as well

as two states with f0 quantum numbers, one of them being
the “σ–particle”. Chiral symmetry breaking is induced by
a nonvanishing expectation value σ0 of the scalar singlet.
In presence of current quark masses the SUV (3) symmetry
is explicitly broken. This is reflected by nonzero expecta-
tion values of the flavor neutral fields within the scalar
octet.

This and the next section are devoted to a general
analysis of the effects of SUV (3)–breaking without explicit
reference to the linear sigma model and spontaneously
broken chiral symmetry. These concepts will only be in-
troduced in Sect. 4. In this way we can understand the
new relations emerging from the linear sigma model in the
context of a more general setting involving only SUV (3)
symmetry.

The octet of pseudoscalar mesons is described by a
hermitian traceless 3 × 3 matrix m, whereas the scalar
octet is similarly denoted by h. In addition, we have the
pseudoscalar and scalar SU(3) singlets p and s. These

fields are normalized with standard kinetic terms

Lkin =
1
4

Tr ∂µm∂µm+
1
4

Tr ∂µh∂µh

+
1
2
∂µp∂µp+

1
2
∂µs∂µs . (2.1)

With SU(3) generators λz obeying Trλyλz = 2δyz we may
write m = mzλz, h = hzλz with mz, hz real. For van-
ishing quark masses the pseudoscalar octet corresponds
to the massless Goldstone bosons. The most general mass
term consistent with SU(3) symmetry, charge conjugation
C and parity3 P reads (we will work in Euclidean space
time throughout this paper)

Lmo =
1
4
m2

m Trm2 +
1
4
m2

h Trh2

+
1
2
m2

pp
2 +

1
2
m2

s(s− s0)2 . (2.2)

Small nonvanishing quark masses can be described by
a linear perturbation or external source for the scalar
mesons

Lj = −1
2

Tr jhh− jss (2.3)

with jh diagonal and traceless. Both jh and js are linear
in the quark masses with4

jh + csjs ∼

mu

md

ms


 . (2.4)

This leads to a shift in the expectation value of the scalar
fields

〈s〉 = u

〈h〉 = wλ3 −
√

3vλ8
(2.5)

There are direct relations between the parameters v
and w and the differences of meson decay constants which
are explained in Appendix A

(
Zm

Zh

) 1
2

v =
1
3

(2∆s −∆u −∆d)

=
1
3
(
fK± + fK0 − 2fπ

)
(
Zm

Zh

) 1
2

w = (∆u −∆d)

= fK± − fK0 . (2.6)

Here ∆u is proportional to the difference of the 〈uu〉 con-
densate for nonvanishing and vanishing quark mass and
similarly for ∆d and ∆s. The quantities f i are related
to the meson decay constants fi by SU(3) breaking wave
function renormalizations which will be discussed in Sect. 6.

3 Charge conjugation corresponds to a transposition of both
matrices m and h whereas parity amounts to m → −m, h → h,
p → −p, s → s

4 The normalization cs can be inferred from Sect. 4
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Until then we take into account the effects of nonvanish-
ing quark masses only in the lowest order in a deriva-
tive expansion. In this approximation the kinetic term
is given by (2.1) and we may identify f i with fi. The
wave function renormalization constants Zm and Zh are
induced by different kinetic terms for the pseudoscalar and
scalar octets within the linear sigma model and will be ex-
plained in Sect. 4. The isospin violating expectation value
w is very small and we can use the experimental values
fπ ≡ fπ± = 92.4 MeV, fK± = 113 MeV to estimate

(
Zm

Zh

) 1
2

v = 13.7 MeV . (2.7)

We will see later, (6.21), that the relation (2.7) is modified
by quark mass corrections to the kinetic terms leading to
f i 6= fi. As a result the value (2.7) will be shifted to
23.3 MeV.

At this stage u is not yet fixed, since we still have
to specify s0 or, equivalently, the meaning of s = 0. A
possible choice would be that s = 0 denotes the min-
imum of the potential in the absence of quark masses,
i.e. s0 = 0. For this choice m2

m vanishes and 〈s〉 = u =√
2/3 (∆u +∆d +∆s) (Zs/Zm)

1
2 . It will, however, prove

to be more convenient to choose the origin of s correspond-
ing to the minimum of the singlet field in the presence of
quark masses. In this case one has s0 = −js/m2

s and

〈s〉 = u = 0 , m2
m > 0 (2.8)

such that m2
m ∼ O(∆). We note that more generally the

choice of s0 fixes the point around which the potential
U(m,h, p, s) is expanded and therefore m2

m as well as the
values of all other parameters in a polynomial expansion
of U depend on s0. For the choice u = 0 we will use m2

m,
v and w instead of the current quark masses mu, md and
ms as the parameters characterizing the explicit chiral
symmetry breaking. Their relation to the quark masses
involves the solution of the field equations for s and h in
presence of the sources (2.3). With the choice u = 0 our ex-
pansion parameter is given by (Zm/Zh)1/2v ' 2

3 (fK−fπ).
The quark mass expansion turns into a Taylor expansion
in the small parameter (fK − fπ)/(fK + fπ) ' 0.1(0.2).
Here the numbers in brackets include the effects of quark
mass corrections to the kinetic terms. Correspondingly,
the small parameter for isospin violating effects is (fK± −
fK0)/(fK± + fK0) ' −2 · 10−3(−3 · 10−3) (see below).
This implies that linear isospin breaking effects give cor-
rections of the same order of magnitude as quadratic quark
mass effects. As a rough estimate one expects that the
squared meson masses can be computed to linear order in
the quark masses with an accuracy of 10–20 percent. This
corresponds to a typical uncertainty for the masses of the
pseudoscalar octet of around (30–60) MeV. To quadratic
order in∆ this error is expected to decrease to a few MeV.

We want to investigate the dependence of the pseu-
doscalar meson masses on the parameters m2

m, v and w.
We will work in this and the next three sections with a
kinetic term of the form (2.1) and discuss effects from

modifications of the kinetic term in Sect. 6. To linear or-
der in the quark masses we need the contributions linear
in m2

m, v and w. This involves the cubic couplings of two
pseudoscalars and h or s. Their most general form consis-
tent with SU(3) symmetry, charge conjugation and parity
reads

L3 =
1
4
γ1sTrm2 +

1
4
γ2 Trm2h+

1
2
γ3pTrmh+

1
2
γ4sp

2 .

(2.9)
We note that because of 〈s〉 = 0 only m2

m and the cou-
plings γ2, γ3 contribute to the pseudoscalar mass matrix.
We find for the masses of the off–diagonal or flavored
mesons π±, K± and K0, K

0

M
2
π± = m2

m − γ2v

M
2
K± = m2

m +
1
2
γ2 (v + w)

M
2
K0 = m2

m +
1
2
γ2 (v − w) .

(2.10)

Again, the bars indicate that the quantities M i differ
from the physical meson masses Mi by SU(3) breaking
wave function renormalization effects to be discussed in
Sect. 6. As long as we restrict the discussion to the ki-
netic term (2.1) (Sects. 2–5) we can identify M i with Mi.
Equation (2.10) allows one to express couplings in terms
of meson masses

m2
m =

1
3

(
M

2
π± +M

2
K± +M

2
K0

)
γ2w = M

2
K± −M

2
K0

γ2v =
1
3

(
M

2
K± +M

2
K0 − 2M

2
π±

) (2.11)

and to estimate the isospin violation to leading order in
the quark masses

fK0 − fK± = −
(
Zm

Zh

) 1
2

w

= 3
(
Zm

Zh

) 1
2

v
M

2
K0 −M

2
K±

M
2
K± +M

2
K0 − 2M

2
π±

' 0.47 MeV (2.12)

which is in good agreement with the result fK0 − fK± '
0.45 MeV from chiral perturbation theory [2]. Here we
have used electromagnetically corrected masses Mπ± =
135.1 MeV, MK± = 492.4 MeV, MK0 = 497.7 MeV. In-
cluding quark mass corrections to the kinetic terms these
values are shifted to (Zm/Zh)1/2w ' −0.67 MeV, (6.23),
and fK0 ' 113.28 MeV, (6.24). We will occasionally also
use the isospin means fK = 1

2 (fK± + fK0) and M
2
K =

1
2 (M

2
K± +M

2
K0).

To obtain the masses of the neutral pseudoscalars π0,
η and η′ we have to diagonalize the general mass term

1
2

(
M

2
3m

2
3 +M

2
8m

2
8 +M2

pp
2
)

+M
2
38m3m8 +M2

3pm3p+M2
8pm8p (2.13)
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which also involves m2
p and γ3 according to

M2
p = m2

p

M2
8p = −

√
3γ3v

M2
3p = γ3w

M
2
8 = m2

m + γ2v =
1
3

(
2M

2
K± + 2M

2
K0 −M

2
π±

)
M

2
3 = m2

m − γ2v = M
2
π±

M
2
38 =

1√
3
γ2w =

1√
3

(
M

2
K± −M

2
K0

)
.

(2.14)
We recover the usual lowest order relations of chiral per-
turbation theory or the “eightfold way” for M

2
8, M

2
3 and

M
2
38 [18,2]. We will neglect the isospin violating mixings of

m3 which only contribute to order w2 to the mass eigenval-
ues. Diagonalization of the (m8, p) sector yields the mass
eigenstates

η = m8 cos θp − p sin θp

η′ = p cos θp +m8 sin θp .
(2.15)

The masses of η and η′ and the octet–singlet mixing angle
θp are given by

M2
η′ +M2

η = M2
p +M

2
8

M2
η′ −M2

η =
[(
M2

p −M
2
8

)2
+ 4M4

8p

] 1
2

(2.16)

tan θp =
M

2
8 −M2

p +
[(
M

2
8 −M2

p

)2
+ 4M4

8p

] 1
2

2M2
8p

.

Contrary to the meson masses the mixing angle θp will re-
ceive additional contributions ∼ O(∆) from modifications
of the kinetic terms discussed in Sect. 6.

It will later be our aim to find relations among the pa-
rameters m2

p, m
2
m, γ2, γ3. For the moment we only notice

that the couplings γ2 and γ3 are directly related to the
partial decay width of the scalar octet into two mesons
belonging to the pseudoscalar octet or singlet. In partic-
ular, γ2 can be extracted from (2.7) and (2.11) and one
finds (

Zh

Zm

) 1
2

γ2 ' 11040 MeV . (2.17)

This value changes to (Zh/Zm)1/2γ2 ' 4942 MeV once
quark mass corrections to the kinetic terms are included.

We next turn to the scalar masses. To zeroth order
they are given by m2

h in (2.2). To linear order in ∆ we
have to supplement (2.9) by

∆L3 =
1
4
γ5sTrh2 +

1
6
γ6 Trh3 +

1
3
γ7s

3 (2.18)

leading to
M

2
a±

o
= m2

h − 2γ6v

M
2
K∗±

o
= m2

h + γ6(v + w)
M

2
K∗0

o
= m2

h + γ6(v − w) .

(2.19)

In the following we will neglect isospin violation in the
scalar sector and use the isospin means MK∗

o
and Mao .

The diagonal part of the mass matrix for the flavor neutral
scalars reads

M2
s = m2

s

M
2
a3 = m2

h − 2γ6v

M
2
f8 = m2

h + 2γ6v

(2.20)

whereas the off–diagonal elements are given by

M2
3s = γ5w

M2
8s = −

√
3γ5v

M
2
af =

2√
3
γ6w .

(2.21)

We note that γ7 does not enter these O(∆) expressions
for the pseudoscalar meson masses. In particular, we find
the interesting relation

M
2
f8 =

1
3

(
4M

2
K∗

o
−M

2
ao

)
(2.22)

which is the Gell-Mann–Okubo formula in the scalar sec-
tor.

3 Pseudoscalar meson masses
to quadratic order

Before proceeding to an estimate of the various couplings
we will analyze in this section the general structure of the
pseudoscalar meson masses to quadratic order in v and
w, assuming a kinetic term of the form (2.1). We stress,
however, that the modifications of the kinetic terms for
nonvanishing quark masses are of the same order as the
effects discussed in this section. They are postponed until
Sect. 6 only for the sake of a simple presentation and for
separating clearly different orders in the derivative expan-
sion. Mass corrections quadratic in v and w involve the
quartic couplings for two pseudoscalars and two scalars.
Their general form is given by

L4 =
1
4
δ1s

2 Trm2 +
1
4
δ2sTrm2h+

1
2
δ3spTrmh

+
1
2
δ4s

2p2 +
1
4
δ5p

2 Trh2 +
1
2
δ6pTrmh2

+
1
8
δ7 Trh2 Trm2 +

1
2
δ8 Trm2h2 +

1
2
δ9 Tr(mh)2

+
1
8
δ10 (Trmh)2 . (3.1)

We note that the couplings δ1, . . . , δ4 do not contribute to
the pseudoscalar masses. The term ∼ δ5 adds effectively
to m2

p an additional piece δ5(3v2+w2) whereas m2
m is sup-

plemented by δ7(3v2 +w2). The quartic terms contribute
to the flavored meson masses

∆M
2
π± = δ7(3v2 + w2) + 2δ8(v2 + w2)

+2δ9(v2 − w2)
∆M

2
K± = δ7(3v2 + w2) + δ8(5v2 − 2vw + w2)

−4δ9(v2 − vw)
∆M

2
K0 = δ7(3v2 + w2) + δ8(5v2 + 2vw + w2)

−4δ9(v2 + vw)

(3.2)
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whereas the mass matrix of the neutral pseudoscalars re-
ceives corrections

∆M
2
3 = δ7(3v2 + w2) + 2(δ8 + δ9)(v2 + w2) + δ10w

2

∆M
2
8 = δ7(3v2 + w2) +

2
3
(δ8 + δ9)(9v2 + w2) + 3δ10v2

∆M2
p = δ5(3v2 + w2)

∆M
2
38 = − 1√

3
(4δ8 + 4δ9 + 3δ10)vw

∆M2
3p = −2δ6vw

∆M2
8p = − 1√

3
δ6(3v2 − w2) .

(3.3)
The lowest order relations between the off–diagonal and
diagonal mesons are only modified by the δ9 and δ10 terms

M
2
3 = M

2
π± + 4δ9w2 + δ10w

2

M
2
8 = 1

3

(
2M

2
K± + 2M

2
K0 −M

2
π±

)
+12δ9v2 + 3δ10v2 .

(3.4)

The combination δ9 +δ10/4 is therefore particularly inter-
esting for the mass relations.

If we neglect isospin violating contributions of order
w2 to the mass eigenvalues and treat the flavored meson
masses Mπ± , MK± , MK0 as three input parameters we
can, in principle, predict Mη and Mη′ as well as the octet–
singlet mixing angle θp. This requires information about
the coupling δ9, the off–diagonal mass term

M2
8p = −

√
3v(γ3 + δ6v) (3.5)

as well as the singlet mass term

M2
p = m2

p + 3δ5v2 . (3.6)

It will be the aim of the next section to discuss these
quantities in the context of a linear sigma model. In ad-
dition, we can use the relations (2.10) and (3.2) to obtain
information about v, w and therefore about the differ-
ences of decay constants (2.6). Without isospin violating
effects we have at this stage four unknown observables
(Mη,Mη′ , θp, fK± − fπ) for which we want to find rela-
tions.

Finally we note that the number of parameters can be
reduced by absorbing δ5 and δ7 into the definitions of m2

p

and m2
m, respectively. This will be done in Sect. 5 in the

framework of the linear σ–model. For w = 0 also δ6 can
be absorbed into γ3. The four observables depend on the
“couplings” m2

p + 3δ5v2, γ3 + δ6v, δ8 and δ9 + δ10/4.

4 Linear meson model

In this section we will compute the couplings of Sects. 2,
3 in the context of the linear meson model (often also
called linear sigma model). The fields m, p, h and s are all
contained in a complex 3 × 3 matrix Φ which transforms
as (3,3) with respect to the chiral flavor group SUL(3) ×
SUR(3)

Φ → URΦU†
L ; UR ∈ SUR(3) , UL ∈ SUL(3) (4.1)

and carries nonvanishing axial charge. Including up to two
derivatives the effective action of the linear σ–model can
be written as a sum of a potential and a kinetic term plus
a source term

Γ [Φ] =
∫
d4x (U + Lkin + Lj) . (4.2)

As a consequence of the invariance under SUL(3)×SUR(3)
symmetry and the discrete transformations5 P (Φ → Φ†)
and C (Φ → ΦT ) the potential is a function of the four
independent invariants [6]

ρ = TrΦ†Φ

τ2 =
3
2

Tr
(
Φ†Φ− 1

3
ρ

)2

=
3
2

Tr
(
Φ†Φ

)2 − 1
2
ρ2

τ3 = Tr
(
Φ†Φ− 1

3
ρ

)3

= Tr
(
Φ†Φ

)3 − 2
3
τ2ρ− 1

9
ρ3

ξ = detΦ+ detΦ† .

(4.3)

With respect to the vector–like SUV (3) symmetry we may
decompose

Φ = σ0 +
1√
2

(
iΦp +

i√
3
χp + Φs +

1√
3
χs

)
(4.4)

with traceless hermitian 3 × 3 matrices Φp, Φs and real
singlets (σ0 is a real positive constant)

χs =
1√
6

[
Tr
(
Φ+ Φ†)− 6σ0

]
χp = − i√

6
Tr
(
Φ− Φ†) . (4.5)

The kinetic term involving two derivatives consistent
with SUL(3) × SUR(3) symmetry, C and P reads6

Lkin = Zϕ Tr ∂µΦ†∂µΦ+
1
4
Yϕ∂

µρ∂µρ+
1
2
Vϕ∂

µξ∂µξ

+
1
2
Ṽϕ∂

µω∂µω

−1
8
X−

ϕ

{
Tr
(
Φ†∂µΦ− ∂µΦ

†Φ
) (
Φ†∂µΦ− ∂µΦ†Φ

)
+ Tr

(
Φ∂µΦ

† − ∂µΦΦ
†) (Φ∂µΦ† − ∂µΦΦ†)}

−1
8
X+

ϕ

{
Tr
(
Φ†∂µΦ+ ∂µΦ

†Φ
) (
Φ†∂µΦ+ ∂µΦ†Φ

)
+ Tr

(
Φ∂µΦ

† + ∂µΦΦ
†) (Φ∂µΦ† + ∂µΦΦ†)}

−1
4
Wϕ Tr

{(
∂µΦ

†Φ∂µΦ†Φ+ Φ†∂µΦΦ
†∂µΦ

)
×
(
Φ†Φ− 1

3
Tr
(
Φ†Φ

))}
5 More precisely, the transformation Φ → Φ† corresponds

to left–right symmetry which is closely related to the parity
reflection P

6 By partial integration we bring all contributions to the
kinetic term into the form where the two derivatives act on
different fields. The invariance of the last term follows from
Vaa′Vbb′Vcc′εa′b′c′ = εabc for arbitrary V ∈ SU(3)
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+
1
2
Uϕε

a1a2a3εb1b2b3

×
(
Φa1b1∂

µΦa2b2∂µΦa3b3 +Φ†
a1b1

∂µΦ†
a2b2

∂µΦ
†
a3b3

)
+ . . . . (4.6)

Here Zϕ, Vϕ, etc. are functions of the four independent
scalar SUL(3)×SUR(3) invariants (4.3) and the dots stand
for other independent terms which are not relevant for
our purposes, as for example ∂µτ2∂µτ2. (See Sect. 8 for
the precise meaning of this statement.) We note that the
additional pseudoscalar invariant

ω = i
(
detΦ− detΦ†) (4.7)

will always appear with even powers, since there is no
other parity–odd invariant. Since its square can be ex-
pressed in terms of (4.3)

ω2 + ξ2 = 4 det(Φ†Φ) = 4 exp
{
Tr ln(Φ†Φ)

}
. (4.8)

it can only appear as an independent quantity in combi-
nation with derivatives as in (4.6). Evaluating (4.6) for a
configuration Φ0 = diag(σ0) the structure of the kinetic
term for fluctuations of Φ around Φ0 simplifies to the form

Lkin =
1
2
Zm Tr ∂µΦp∂µΦp +

1
2
Zh Tr ∂µΦs∂µΦs

+
1
2
Zp∂

µχp∂µχp +
1
2
Zs∂

µχs∂µχs (4.9)

where the normalization is adapted such that to lowest
order in σ0 one has Zm = Zh = Zs = Zp = Zϕ. The fields
Φp, χp, Φs, χs have the same transformation properties
with respect to SU(3) and parity as m, p, h, s, respec-
tively.

So far σ0 in (4.4) has not been specified. If we want to
use an expansion around 〈s〉 = 0 we should identify it with
the value of 1

6

(
TrΦ+ TrΦ†) at the potential minimum in

presence of the quark masses, i.e.

σ0 =
1
3

(σu + σd + σs)Z
− 1

2
m

=
1
6
(
fπ + fK± + fK0

)
Z

− 1
2

m . (4.10)

This corresponds to our choice u = 0 in Sect. 2 and leads
to the identification (cf. (2.1))

Φp = (2Zm)− 1
2 m , Φs = (2Zh)− 1

2 h

χp = Z
− 1

2
p p , χs = Z

− 1
2

s s .
(4.11)

Corrections to the kinetic terms which are linear in the
quark masses involve cubic terms like TrΦs∂

µΦp∂µΦp etc.
and will be discussed in Sect. 8.

For the configuration Φ0 = diag(σ0) the invariants
(4.3) take on the values

ρ0 = 3σ2
0

ξ0 = 2σ3
0

τ2 = τ3 = 0 .
(4.12)

We next decompose the invariants ρ−ρ0, τ2, τ3 and ξ−ξ0
into the irreducible representations Φp, Φs, χp and χs.
Using occasionally the shorthand notation

χs =
√

6σ0 + χs (4.13)

one finds

ρ− ρ0 =
1
2

TrΦ2
p +

1
2

TrΦ2
s +

1
2
χ2

p +
1
2
χ2

s

+
√

6σ0χs (4.14)

τ2 =
1
2
χ2

s TrΦ2
s +

1
2
χ2

p TrΦ2
p +

3
8

TrΦ4
s − 1

8
(
TrΦ2

s

)2
+

3
8

TrΦ4
p − 1

8
(
TrΦ2

p

)2
+

3
2

TrΦ2
sΦ

2
p

−3
4

Tr (ΦsΦp)
2 − 1

4
TrΦ2

s TrΦ2
p + χsχp TrΦsΦp

+
√

3
2
χs TrΦ3

s +
√

3
2
χs TrΦsΦ

2
p

+
√

3
2
χp TrΦ3

p +
√

3
2
χp TrΦpΦ

2
s (4.15)

τ3 = −1
3
(
TrΦ2

s + TrΦ2
p

)
τ2 − 1

72
(
TrΦ2

s + TrΦ2
p

)3
+

1
8

Tr
[
Φ2

s + Φ2
p +

2√
3

(χsΦs + χpΦp)
]3

+
1

4
√

3

[
χs Tr

(
Φ2

sΦpΦsΦp − Φ3
sΦ

2
p

)
+χp Tr

(
Φ2

pΦsΦpΦs − Φ3
pΦ

2
s

)]
+

3
8

Tr
[
Φ4

sΦ
2
p + Φ2

sΦpΦ
2
sΦp − 2Φ3

sΦpΦsΦp

+Φ4
pΦ

2
s + Φ2

pΦsΦ
2
pΦs − 2Φ3

pΦsΦpΦs

]
. (4.16)

Including terms quartic in m, h, s, p the invariant τ3 only
contributes

τ
(4)
3 = 2

√
2σ3

0 TrΦ3
s + σ2

0

[
3 Tr

(
Φ4

s + Φ2
sΦ

2
p

)
−TrΦ2

s

(
TrΦ2

s + TrΦ2
p

)
+2

√
3
(
χs TrΦ3

s + χp TrΦ2
sΦp

)]
. (4.17)

Using the fact that for an arbitrary traceless 3 × 3 matrix
T

det (α+ T ) =
1
3

TrT 3 − 1
2
αTrT 2 + α3 (4.18)

one also obtains

ξ − ξ0 =
1

3
√

2
TrΦ3

s − 1√
2

TrΦsΦ
2
p

−1
2
σ0
(
TrΦ2

s − TrΦ2
p

)− 1
2
√

6
χs

(
TrΦ2

s − TrΦ2
p

)
+

1√
6
χp TrΦsΦp − σ0χ

2
p − 1√

6
χsχ

2
p

+
√

6σ2
0χs + σ0χ

2
s +

1
3
√

6
χ3

s . (4.19)

For the choice (4.10) one has u = 0 (c.f. Sect. 2) and
we denote v and w collectively by ∆. One observes that
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the expectation values of the invariants in the presence of
quark masses obey

〈ρ− ρ0〉 ∼ O(∆2) , 〈ξ − ξ0〉 ∼ O(∆2)
〈τ2〉 ∼ O(∆2) , 〈τ3〉 ∼ O(∆3) .

(4.20)

The mass squared matrix for the pseudoscalar mesons is
obtained from the potential of the linear σ–model by tak-
ing the second derivatives with respect to the parity–odd
representations Φp and χp, which we will collectively de-
note by ϕ−. Since the potential is parity–even, all VEVs
of single derivatives of the invariants (4.3) vanish. We note
that〈

∂2ρ

∂ϕ−∂ϕ−

〉
∼ O(1) ,

〈
∂2ξ

∂ϕ−∂ϕ−

〉
∼ O(1)〈

∂2τ2
∂ϕ−∂ϕ−

〉
∼ O(∆) ,

〈
∂2τ3

∂ϕ−∂ϕ−

〉
∼ O(∆2) .

(4.21)

The most general SUL(3) × SUR(3) symmetric poten-
tial can be expanded in a Taylor series around ρ = ρ0,
ξ = ξ0, τ2 = 0 and τ3 = 0. We now see that a determina-
tion of the pseudoscalar masses up to quadratic order in
the quark masses requires

U = m2
g (ρ− ρ0) − 1

2
ν [ξ − ξ0 − σ0(ρ− ρ0)]

+
1
2
λ1 (ρ− ρ0)

2 +
1
2
λ2τ2 +

1
2
λ3τ3 (4.22)

+
1
2
β1 (ρ− ρ0) (ξ − ξ0) +

1
2
β2 (ρ− ρ0) τ2+

1
2
β3 (ξ − ξ0) τ2 +

1
2
β4 (ξ − ξ0)

2 + . . . .

Here the potential has been normalized such that it van-
ishes for the configuration Φ = diag(σ0). We see that to
zeroth order in the quark masses the only contributions
to the pseudoscalar mass matrix arise from ν and m2

g. To
linear order we obtain corrections from λ2 and ν whereas
to quadratic order the other λi and the βi enter. We add
to the effective action a source term

Lj = −1
2

Tr
(
Φ†j + j†Φ

)
(4.23)

which is linear in the real quark mass matrix Mq =
diag(mu,md,ms)

j = j† = aqMq . (4.24)

We denote the singlet part of the source by

js =
1√
6
Z

− 1
2

s Tr j (4.25)

and require
∂

∂χs
(U + Lj)|Φ=σ0

= 0 . (4.26)

Our choice (4.10) for σ0 therefore implies

√
6σ0m

2
g = jsZ

1
2
s (4.27)

and the mass term m2
g is linear in the quark masses.

Comparing (4.22) with (2.2), (2.9) and (3.1) we can
now determine the various couplings of the last two sec-
tions in terms of those of the linear sigma model. For the
pseudoscalar mass terms of (2.2) we find

m2
m = m2

gZ
−1
m

m2
p =

(
m2

g +
3
2
ν σ0

)
Z−1

p
(4.28)

The cubic couplings of (2.9) contributing to O(∆) read

γ1 =
√

6
(
σ0λ1 − 1

12
ν + σ2

0β1 + σ3
0β4

)
Z

− 1
2

s Z−1
m

γ2 =
1
2
(
3σ0λ2 + ν

)
Z

− 1
2

h Z−1
m

γ3 =
√

6
2

(
σ0λ2 − 1

6
ν

)
Z

− 1
2

p Z
− 1

2
h Z

− 1
2

m

γ4 =
√

6
(
σ0λ1 +

1
6
ν − 1

2
σ2

0β1 − 2σ3
0β4

)
Z

− 1
2

s Z−1
p

(4.29)
whereas for the quartic couplings of (3.1) we obtain

δ1 =
(

1
2
λ1 +

5
4
σ0β1 + 2σ2

0β4

)
Z−1

s Z−1
m

δ2 =

√
3
2

(
1
2
λ2 − σ0β1 + 3σ2

0β2 + 3σ3
0β3 − 2σ2

0β4

)

×Z− 1
2

s Z
− 1

2
h Z−1

m

δ3 =
(

1
2
λ2 +

1
2
σ0β1 + 3σ2

0β2 + 3σ3
0β3 + σ2

0β4

)

×Z− 1
2

s Z
− 1

2
p Z

− 1
2

h Z
− 1

2
m

δ4 =
(

1
2
λ1 − σ0β1 − 4σ2

0β4

)
Z−1

s Z−1
p

δ5 =
(

1
2
λ1 − 3

4
σ0β1 + σ2

0β4 +
3
2
σ2

0β2 − 3σ3
0β3

)
×Z−1

p Z−1
h

δ6 =
√

6
8
(
λ2 + 4σ2

0λ3
)
Z

− 1
2

p Z−1
h Z

− 1
2

m

δ7 =
(

1
2
λ1 − 1

4
λ2 − 1

2
σ2

0β4 − σ2
0λ3 +

3
2
σ2

0β2 +
3
2
σ3

0β3

)
×Z−1

h Z−1
m

δ8 =
3
8
(
λ2 + 2σ2

0λ3
)
Z−1

h Z−1
m

δ9 = − 3
16
λ2Z

−1
h Z−1

m

δ10 = 0 . (4.30)

We next turn to the scalars for which we wish to relate
the couplings m2

s, m
2
h, γ5, γ6 to those of the linear sigma

model. For this purpose we note that, contrary to the case
of the pseudoscalar mesons, the parity–even scalar meson
fields, collectively denoted by ϕ+, may also appear to odd
powers in the invariants ρ, ξ, τ2, τ3. We therefore need in



D.-U. Jungnickel, C. Wetterich: Effective linear meson model 679

addition to (4.20)

〈
∂ρ

∂ϕ+

〉
∼ O(1) ,

〈
∂τ2
∂ϕ+

〉
∼ O(∆)〈

∂ξ
∂ϕ+

〉
∼ O(1) ,

〈
∂τ3
∂ϕ+

〉
∼ O(∆2)

(4.31)

and〈
∂2ρ

∂ϕ+∂ϕ+

〉
∼ O(1) ,

〈
∂2τ2

∂ϕ+∂ϕ+

〉
∼ O(1)〈

∂2ξ

∂ϕ+∂ϕ+

〉
∼ O(1) ,

〈
∂2τ3

∂ϕ+∂ϕ+

〉
∼ O(∆) .

(4.32)

Hence, the expansion (4.22) of the potential contains ex-
actly those terms required to obtain the scalar masses to
linear order in ∆. Furthermore, we see that to zeroth or-
der in ∆ only m2

g, ν, λ1, λ2, β1 and β4 contribute. We find
in particular

m2
s = m2

gZ
−1
s + 6σ0

(
σ0λ1 + σ2

0β1 + σ3
0β4 − 1

12
ν

)
Z−1

s

m2
h = m2

gZ
−1
h + σ0

(
3σ0λ2 + ν

)
Z−1

h (4.33)

and

γ5 =
√

6
(
σ0λ1 + σ0λ2 − σ3

0β4

+
1
12
ν + 3σ3

0β2 + 3σ4
0β3

)
Z

− 1
2

s Z−1
h

γ6 =
1
4
(
9σ0λ2 − ν + 12σ3

0λ3
)
Z

− 3
2

h

γ7 =
√

6
(

3
2
σ0λ1 +

9
4
σ2

0β1 + 3σ3
0β4 − 1

12
ν

)
Z

− 3
2

s .

(4.34)

5 Parameters of the linear meson model

In this section we will give a first estimate of the values
of the parameters of the linear σ–model. It is based on an
expansion in powers of ∆ to lowest order in the derivative
expansion7. Comparison of the estimates of this section
with those of the following ones will allow us to evaluate
the quantitative influence of quark mass corrections to the
kinetic terms (which are neglected here). The results of
this section can also be compared with earlier work [7]–[14]
by setting Zh = Zp = Zm. Later we will see, however, that
Zh/Zm deviates substantially from one. We observe that
the couplings λ1, β1, β2, β3 and β4 influence the meson
masses only through m2

s, δ5 and δ7 whereas λ3 appears

7 The systematic ordering of the derivative expansion is am-
biguous to lowest order since a minimal kinetic term must al-
ways be included. For our purpose we consider to lowest order
the kinetic term (4.9). The first order comprises the most gen-
eral terms with up to two derivatives, the second order includes
four derivatives and so on

in addition in δ6 and δ8. The couplings δ5 and δ7 modify
the relation between the neutral and flavored pseudoscalar
masses, (3.3) and (3.4), through the term 3δ5v2 in M2

p and

the term 3δ7v2 in M
2
3, M

2
8 and the flavored pseudoscalar

masses. (We neglect here corrections ∼ w2.) A redefinition
of couplings

m′2
g = m2

g + (3δ7 + 4δ8 − 2δ9) v2Zm

ν′ = ν +
[
2δ5Zp −

(
2δ7 +

8
3
δ8 − 4

3
δ9

)
Zm

]
v2

σ0

λ
′
2 = λ2 − 1

3

[
2δ5Zp +

(
δ7 +

4
3
δ8 − 2

3
δ9

)
Zm

]
v2

σ2
0

(5.1)

absorbs this correction in the lowest order masses m2
m,

m2
p, m

2
h, whereas the corresponding shifts in the γ’s only

contribute to cubic order in ∆. In terms of these couplings
one has

M
2
π± = m′2

g Z
−1
m − 1

6

(
3λ

′
2σ0 + ν′

)
Z

− 3
2

m

× (fK± + fK0 − 2fπ

)
−1

6

(
λ

′
2 + λ3σ

2
0

)
Z−2

m

(
fK± + fK0 − 2fπ

)2
M

2
K± = m′2

g Z
−1
m +

1
12

(
3λ

′
2σ0 + ν′

)
Z

− 3
2

m

× (4fK± − 2fK0 − 2fπ

)
+

1
12

(
λ

′
2 + λ3σ

2
0

)
Z−2

m

(
fK± + fK0 − 2fπ

)
× (7fK0 − 5fK± − 2fπ

)
M

2
K0 = m′2

g Z
−1
m +

1
12

(
3λ

′
2σ0 + ν′

)
Z

− 3
2

m

× (4fK0 − 2fK± − 2fπ

)
+

1
12

(
λ

′
2 + λ3σ

2
0

)
Z−2

m

(
fK± + fK0 − 2fπ

)
× (7fK± − 5fK0 − 2fπ

)
(5.2)

or
m′2

g =
1
3
Zm

(
M

2
K± +M

2
K0 +M

2
π±

)
(5.3)

and

M
2
8 =

1
3

(
2M

2
K± + 2M

2
K0 −M

2
π±

)
−1

4
λ

′
2Z

−2
m

(
fK± + fK0 − 2fπ

)2
M2

p =
(
m′2

g +
3
2
ν′σ0

)
Z−1

p

M2
8p = −

√
2
(
Zm

Zp

) 1
2
[

1
3

(
M

2
K± +M

2
K0 − 2M

2
π±

)

−1
4
ν′Z− 3

2
m

(
fK± + fK0 − 2fπ

)
−1

8
λ

′
2Z

−2
m

(
fK± + fK0 − 2fπ

)2 ]
. (5.4)
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We will use (5.2), (5.3) to determine m′2
g , λ

′
2 and ν′ for

given decay constants, Mπ± , MK± and MK0 (once the
wave function renormalizations are known). The parame-
ters m′2

g and ν′ are independent of λ3 whereas the depen-
dence of λ

′
2 on λ3 is linear in ∆. Hence, the unflavored

pseudoscalar mass matrix given by (5.4) depends only to
cubic or higher order on λ3 and we will therefore neglect
λ3 in the pseudoscalar sector altogether.

In the following we will make a first attempt to es-
timate the parameters m′2

g , ν′ and λ
′
2. We present the

values to different orders in the quark masses in order to
gain some intuition for the convergence of the quark mass
expansion for these parameters. We use in this section the
simplified kinetic term (4.9). To zeroth order in the quark
masses the octet–singlet mixing vanishes and m2

g = 0.
This yields the zeroth order relations for the mass of the
η′ and the scalar octet

M2
η′ = 3

2ν
′σ0Z

−1
p = 3

2νσ0
Zm

Zp

m2
h = 3λ

′
2σ

2
0Z

−1
h + 2

3M
2
η′

Zp

Zh
= 3λ2σ

2
0

Zm

Zh
+ 2

3M
2
η′

Zp

Zh
.

(5.5)

Here we have used for the second identities renormalized
couplings according to

σ0 = Z
1
2
mσ0 = 1

6

(
fπ + fK± + fK0

) ' 53.1 MeV

ν = Z
− 3

2
m ν′ , m2

g = Z−1
m m′2

g ,

λ1 = Z−2
m λ1 , λ2 = Z−2

m λ
′
2 , λ3 = Z−3

m λ3

(5.6)

etc. This yields the zeroth order estimate

ν(0)Zm

Zp
' 11500 MeV . (5.7)

A first possibility for an estimate of λ2 uses the relation
between the masses of the scalar and the pseudoscalar
octets. For this purpose we need

m2
h =

1
3

(
2M

2
K∗

o
+M

2
ao

)
, (5.8)

where MK∗
o

' 1430 MeV. The a0–mesons, however, are
not unambiguously identified. Usually it is associated with
the well established a0(980) resonance. On the other hand,
the neighboring f0(980) is often assumed to be an I = 0,
KK bound state or a four quark state. One may therefore
as well identify the a0(980) with the corresponding I = 1,
KK “molecules”. The only remaining candidate for the
a0–mesons is then the possible a0(1320) resonance [15]. In
this section we will use both possibilities with the notation
Ma±

o
= 1320(983) MeV. We obtain

mh ' 1394(1298) MeV

λ
(a)
2
Zm

Zh
' 156.9(126.5) − 72.0

(
Zp

Zh
− 1
)
. (5.9)

In addition to the uncertainty in the identification of the
a0–meson the value of λ2 depends rather sensitively on

ratios of wave function renormalization constants. For this
reason we will compute below the value of λ2 from an
expression involving only properties of the pseudoscalar
mesons.

To linear order in the quark masses the mass eigenval-
ues of the pseudoscalars are not affected by quark mass
corrections to the kinetic term (see Sect. 6). We can there-
fore identify M i = Mi and obtain

m2
m = m2

g =
1
3

(
M

2
K± +M

2
K0 +M

2
π±

)
' (411.7 MeV)2 (5.10)

γ2v =
(

3
2
λ2σ0 +

1
2
ν

)(
Zm

Zh

) 1
2

v

=
1
3

(
M

2
K± +M

2
K0 − 2M

2
π±

)
' (388.9 MeV)2 . (5.11)

We may fix the parameter Zm

Zp
ν by the relation

M2
η′ = m2

p =
3
2
Zm

Zp
νσ0 +

1
3
Zm

Zp

(
M

2
K± +M

2
K0 +M

2
π±

)
(5.12)

and find

ν(1)Zm

Zp
'
(

9372 − 2124
[
Zm

Zp
− 1
])

MeV . (5.13)

The coupling λ2 can now be infered from (5.11)

λ
(b)
2 =

2
3

(M
2
K± +M

2
K0 − 2M

2
π±)(

fK± + fK0 − 2fπ

)
σ0

− 2
9
Zp

Zm

M2
η′

σ2
0

+
2
27

(M
2
K± +M

2
K0 +M

2
π±)

σ2
0

= 77.93 − 72.03
(
Zp

Zm
− 1
)
. (5.14)

We note that this determination of λ2 uses the ratio of two
quantities which are linear in ∆. The relation between f i

and the meson decay constants fi is strongly influenced
by quark mass corrections to the kinetic terms already to
leading order in the quark mass expansion. From there we
expect sizeable corrections to λ2. In addition, an estimate
of λ2 requires information on Zp/Zm and involves differ-
ences in larger quantities. As a result, λ2 will be poorly
determined even once the quark mass corrections to the
kinetic terms are included. We will find in Sect. 13 typical
values λ2 ' 15−30 even for Zp equal or somewhat smaller
than one.

Concerning the scalar meson masses to linear order in
∆ we observe the relation

m2
h − Zm

Zh
m2

g = 2σ0

(
Zm

Zh

)1/2

γ2 (5.15)
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which translates with (5.11) into

Zh

Zm
=

2σ0

m2
h

(
M

2
K± +M

2
K0 − 2M

2
π±

)
(
fK± + fK0 − 2fπ

) +
m2

g

m2
h

. (5.16)

Inserting experimental values this leads to the ratio

Zh

Zm
' 0.69(0.79) . (5.17)

These values are changed to Zh/Zm ' 0.40 − 0.65 once
quark mass corrections to the kinetic terms are included
(see (11.6)). From the mass splitting within the scalar
octet we infer

γ6

γ2
=

3
2
Zm

Zh

(
1 +

12σ3
0λ3 − 4ν

9σ0λ2 + 3ν

)

=
M

2
K∗

o
−M

2
ao

M
2
K± +M

2
K0 − 2M

2
π±

' 0.67(2.38) . (5.18)

This relation can be used to estimate the size of λ3.
Having computed the parameters ν, m2

g, σ0, λ2, λ3,
Zm/Zh, v and w from M2

η′ , M2
K± , M2

K0 , M2
π± , M2

K∗
o
, M2

a±
o
,

fK± and fπ we can now derive other meson properties.
Within the approximation M i = Mi, f i = fi used in
this section we discuss here briefly the non–flavored pseu-
doscalar mesons. For a determination of the pseudoscalar
mixing angle θp to O(∆) and the η and η′ masses to O(∆2)
we need the off–diagonal element in the mass matrix for
the neutral pseudoscalars to O(∆)

M2
8p = − 1

2
√

2

(
fK± + fK0 − 2fπ

)(
2λ2σ0 − 1

3
ν

)(
Zm

Zp

) 1
2

= −
√

2
(
Zm

Zp

) 1
2
{

1
3

(
M

2
K± +M

2
K0 − 2M

2
π±

)

−fK± + fK0 − 2fπ

fK± + fK0 + fπ

×
[
Zp

Zm
M2

η′ − 1
3

(
M

2
K± +M

2
K0 +M

2
π±

)]}
. (5.19)

We note that for Zp ' Zm the second term almost can-
cels the first one. Using (2.17) with M

2
8 given by (2.14)

and Mp ' Mη′ ' 957.8 MeV as an experimental input,
one finds θp = −18.7,−7.2, 0.5 for Zp/Zm = 0.5, 1.0, 1.5.
We will see in Sect. 6 how quark mass corrections to the
kinetic terms modify these relations substantially already
to linear order in ∆.

For the η mass we get to linear order the Gell-Mann–
Okubo relation(

M (1)
η

)2
= M

2
8 =

1
3

(
2M

2
K± + 2M

2
K0 −M

2
π±

)
' (566.3 MeV)2 . (5.20)

We can use (5.19) together with the estimate of M
2
8 to

quadratic order in ∆, (5.4), to compute a mass relation

between M2
η and M2

η′ to quadratic order in ∆. Inserting
λ2 from (5.14) and using Mη′ as an input we find

M (2)
η = 521.2, 535.7, 549.9 MeV (5.21)

for Zp/Zm = 0.5, 1.0, 1.5. This is already very close to the
experimental value Mη = 547.5 MeV as long as Zp/Zm is
not too small.

To summarize this section we find that the approxi-
mation of a quark mass independent kinetic term (2.1)
or (4.9) gives already a reasonable overall picture of the
scalar and pseudoscalar mesons. The most important mod-
ifications from the quark mass corrections of the kinetic
terms are expected for the value of λ2 and the mixing an-
gle θp. This will, in turn, influence the estimate of M2

η to
second order in ∆ and similarly the relation between M2

η′

and M2
p .

6 Quark mass corrections to kinetic terms

The kinetic term (2.1) obtains corrections for nonvanish-
ing quark masses. Expanding around Φ0 = diag(σ0) with
〈χs〉 = 0 these corrections involve only the expectation
value of h. We are only interested here in the kinetic terms
for m and p. The most general corrections involving two
derivatives and being linear in v and w can then be written
in the form

L(1)
kin =

1
4
ωm Trh∂µm∂µm+

1
2
ωpm∂µpTrh∂µm . (6.1)

The term ∼ ωm leads to different wave function renor-
malization constants for pions, kaons and m8 according
to

Zπ = 1 − ωmv
ZK± = 1 + 1

2ωm(v + w)
ZK0 = 1 + 1

2ωm(v − w)
Z8 = 1 + ωmv .

(6.2)

This implies that the renormalized pion mass Mπ± obeys

M2
π± = M

2
π±Z−1

π (6.3)

where M
2
π± is the mass computed in the previous sections,

e.g.

M
2
π± = m2

m − γ2v + δ7(3v2 + w2)
+2δ8(v2 + w2) + 2δ9(v2 − w2) . (6.4)

Similar relations hold for M2
K± , M2

K0 , M2
3 and M2

8 where-

as M2
38 = M

2
38Z

− 1
2

π Z
− 1

2
8 . There is also a mixed term

∼ ωmw∂
µ ×m3∂µm8. It gives corrections ∼ w2 to the

π0 and η masses and will be neglected here.
One should note that the choice of Zπ, ZK± , ZK0 and

Z8 is somewhat arbitrary. It depends on the convention
for Zm, since a rescaling of Zm would result in a rescaling
of Zπ, ZK± , ZK0 and Z8. We employ here a convention
for Zm where (cf. (6.2))

Zπ + ZK± + ZK0 = 1 . (6.5)
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Neglecting corrections ∼ w2 we may then use

ωmv =
1
3

(
ZK±ZK0

Z2
π

− 1
)
. (6.6)

The difference betweenM
2

andM2 influences the sym-
metry relations once expressed in terms of physical masses
M2. In particular, we observe a modification of the rela-
tion (3.4) between M2

8 , M2
π± , M2

K± and M2
K0 . Including

the terms (6.1) this relation now reads (see (6.9) for the
definition of f)

M2
8 =

1
3

(
2M2

K±
ZK±

Z8
+ 2M2

K0
ZK0

Z8
−M2

π±
Zπ

Z8

)

− 1
4
λ2
(
fK± + fK0 − 2fπ

)2 1
Z8

. (6.7)

In consequence, the corrections due to the modification of
the kinetic term influence the pseudoscalar mass eigenval-
ues to second order in the quark masses. Expanding (6.7)
to this order one finds neglecting terms ∼ w2

M2
8 =

1
3
(
2M2

K± + 2M2
K0 −M2

π±
)

−1
3
ωmv

(
M2

K± +M2
K0 − 2M2

π±
)

−1
4
λ2

[
(fK± + fK0 − 2fπ)

−1
4
ωmv (fK± + fK0 + 4fπ)

]2
. (6.8)

Here we have used that the deviation of Zπ, ZK± ,
etc. from unity also influences the relation between v, w
and the decay constants fπ, fK± , fK0 . The effect of the
wave function renormalization on the meson decay con-
stants is discussed in Appendix A and leads to

(
Zm

Zh

) 1
2
w = Z

− 1
2

K±fK± − Z
− 1

2
K0 fK0 = fK± − fK0(

Zm

Zh

) 1
2
v = 1

3

(
Z

− 1
2

K±fK± + Z
− 1

2
K0 fK0 − 2Z− 1

2
π fπ

)
= 1

3

(
fK± + fK0 − 2fπ

) (6.9)

with
fπ = Z

− 1
2

π fπ (6.10)

and similarly for fK± , fK0 .
In summary, we will denote the physical meson masses

and decay constants by Mi and fi. They correspond to a
normalization of the fields with inverse propagator q2+M2

i
in the vicinity of q2 = −M2

i . This is also the relevant field
normalization for the decay constants — see Appendix A.
On the other hand, the quantities M i and f i correspond
to a common SU(3) symmetric wave function renormal-
ization for the whole octet. Symmetry relations are there-
fore most easily expressed in terms of M i and f i. For an
approximation of the kinetic term to lowest order in the
quark masses there is no difference between Mi and M i

or fi and f i. This approximation is sufficient to compute
the meson masses to linear order in the quark masses,

but not for decay constants and the mixing angle θp. In
Sects. 2–5 we employed a lowest order approximation to
the kinetic term and therefore omitted the distinction be-
tween M and M or f and f for the quantitative estimates.
On the other hand, the algebraic relations in the preced-
ing sections are all expressed in terms of M and f and are
therefore not altered by modifications of the kinetic terms.
In consequence, the only necessary change for the quanti-
tative estimates involves the relations between f and f or
M and M .

We also note that the relations (6.2) use a wave func-
tion renormalization which is defined for a common mo-
mentum q20 for the whole octet. In fact, one may view
the derivative expansion as a Taylor expansion of the in-
verse propagators G−1(q) around some fixed nonvanishing
momentum q20 rather than an expansion around zero mo-
mentum, i.e. an expansion of the type G−1

i (q) = M
2
i +

q2{Zi + O(q2 − q20)}. Here the Zi depend on the choice of
q20 through the normalization condition

Zi = 1
q2
0

(
G−1

i (q20) −G−1
i (0)

)
M

2
i = G−1

i (0) .
(6.11)

This condition, together with (6.5), also specifies the pre-
cise meaning of8 Zm. Similar definitions also apply for Zp

and Zh, but the momentum used can now be different from
the pseudoscalar octet momentum q20 . For the definition
of Zp it seems convenient to replace9 q20 by q2p = −m2

p,
whereas for Zh one may use q2h = −m2

h. We note that
our definition (6.11) of Zi also specifies the precise mean-
ing of the couplings ωm and ωpm in (6.2). They multiply
three–point functions at zero momentum for10 h and mo-
menta given by q20 for p and m. All these specifications are
irrelevant as long as only terms with two derivatives are
included. The conceptual setting becomes crucial, how-
ever, once we go beyond this approximation and include
higher derivative terms.

In fact, the definition M2
i = M

2
i /Zi yields the physical

pole masses M2
i only if we replace in (6.11) the common

momentum q20 by the individual locations of the poles at
q2i = −M2

i . This involves corrections of the inverse prop-
agators ∼ (q2i − q20). We discuss these additional contri-
butions from higher derivative terms more explicitly in
Sect. 12. Here we note only the following general prop-
erties: Except for the mixing angle the higher derivative
corrections can be absorbed completely in the wave func-
tion renormalization constants Zi. They lead to additional
terms on the right hand side of (6.2) which are propor-

8 For an expression of the propagators in terms of the fields Φ

or Φp the Zi stand for Zπ±Zm etc. and M
2
i should be replaced

by M
2
π±Zm etc

9 For convenience we will later also use q2
p = −M2

η
10 The normalization of h, however, is specified by Zh and
therefore adapted to the behavior of the scalar propagator in
the vicinity of its pole
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tional to (q2i − q20) according to

G−1
i (q) = M

2
i + Ziq

2 +Hi(q2 − q20)q2

+ 1
2H

(2)
i (q2 − q20)2q2 + . . .

= M
2
i + Ziq

2 +Hi(q2 − q2i )q2 + . . . .

(6.12)

Here the quantities Zi correspond to a normalization at
q20 and are given by (6.2) whereas the true wave function
renormalizations Zi are defined at q2i = −M2

i , with

Zi = Zi +∆Zi

∆Zi = Hi(q2i − q20) + 1
2H

(2)
i (q2i − q20)2 + . . . .

(6.13)

The difference q2i − q20 is given by pseudoscalar mass dif-
ferences and is therefore linear in the quark masses. More
precisely, it is again linear in v and w. The Taylor expan-
sion of G−1(q)−G−1(0) around q20 seems most reliable for√

−q20 somewhere inbetween the kaon and pion masses.
We will choose the renormalization scale for Zm as

q20 = −1
3
(
M2

K± +M2
K0 +M2

π±
)

(6.14)

such that (6.5) remains valid. This implies that ∆Zπ =
−(∆ZK±+∆ZK0) and we can absorb the higher derivative
effects partially in a redefinition of an effective

ωm = ωm − ∆Zπ

v
(6.15)

leading to
Zπ = 1 − ωmv

ZK± = 1 + 1
2ωm(v + w)

ZK0 = 1 + 1
2ωm(v − w)

Z8 = 1 + ωmv +K8 .

(6.16)

In terms of ωm only Z8 receives an additional correction

K8 = ∆Z8 − 2∆ZK . (6.17)

This yields the complete expression for M2
8 to quadratic

order in the quark masses

M2
8 = 1

3 (1 −K8)
(
2M2

K± + 2M2
K0 −M2

π±
)

− 1
3ωmv

(
M2

K± +M2
K0 − 2M2

π±
)

− 1
4λ2 [(fK± + fK0 − 2fπ)

− 1
4ωmv (fK± + fK0 + 4fπ)

]2
.

(6.18)

For a computation of Mη to quadratic order in the quark
masses one needs, in addition, the complete expression for
the mixing angle θp to linear order in the quark masses.

In order to get a rough estimate of the size of the
higher derivative corrections one may assume that the true
inverse propagator does not deviate by more than 10%
from the lowest order form M2 + q2 over a momentum

range between −M2
π and −M2

η . This results in a typical

bound
∣∣Hm

∣∣ <∼ 0.1
∣∣q20∣∣−1 and we expect the higher deriva-

tive corrections to be unimportant. Furthermore, within
a systematic derivative expansion we can take to leading
order a common Hm for the whole octet. This yields

K8 = Hm

( 4
3M

2
K −M2

η − 1
3M

2
π

)
. (6.19)

Inserting the leading order for M2
η on the right hand side

of (6.19) we find
K8 ∼ O(∆2) . (6.20)

We conclude that K8 gives corrections to the pseudoscalar
masses which are formally cubic in the mq.

The deviation of Zπ, ZK± , etc. from one can lead to
a sizeable change of the infered value for v and therefore
to important modifications of the values of the couplings
of the linear sigma model. Inserting (6.16) into (6.9) and
(5.6) yields to leading order (neglecting isospin violation)

(
Zm

Zh

) 1
2
v = 2

3

[
fK − fπ − 1

4ωmv (fK + 2fπ)
]

σ0 = 1
6

[
2fK + fπ − 1

2ωmv (fK − fπ)
]
.

(6.21)

We observe that the correction to the relation (2.6) is of
the order (Zh/Zm)1/2ωmσ0. It is not suppressed by quark
mass terms. On the other hand, the correction to σ0 is
of second order in the quark masses and therefore small.
Taking ωmv = −0.20 (see Sect. 13) the relations (6.21)
result in(

Zm

Zh

) 1
2

v ' 23.3 MeV , σ0 ' 53.8 MeV (6.22)

to be compared with (2.7) and (5.6). We conclude that
the quark mass corrections to the kinetic terms are impor-
tant for a quantitative understanding of the linear sigma
model! These corrections also matter for a determination
of the decay constant fK0 . We first notice the change in w
induced by ωmv = −0.20 in (2.12). Using (6.16) we find

(
Zm

Zh

) 1
2

w = −3
2

(
Zm

Zh

) 1
2
v

(1 − ωmv)
(M2

K0 −M2
K±)

(M2
K −M2

π)
' −0.67 MeV . (6.23)

This yields

fK0 − fK± = −
(
Zm

Zh

) 1
2

w

×


(1 +

1
2
ωmv

) 1
2

+
fK±

2
(

Zm

Zh

) 1
2
v

ωmv(
1 + 1

2ωmv
)



' 0.28 MeV (6.24)

to be compared with (2.12), fK0 − fK± = 0.47 MeV, for
ωmv = 0. The quark mass corrections to the kinetic terms
reduce the isospin violation of the decay constants signif-
icantly!
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Let us next turn to the term ∼ ωpm∂µpTrh∂µm in
(6.1) which influences the octet–singlet mixing angle θp.
This term leads to an off–diagonal kinetic term

ω̂∂µm8∂µp = −
√

3ωpmv∂
µm8∂µp . (6.25)

Using mR8 = Z
1
2
8 m8 the inverse propagator for the fields

p, mR8 is given in momentum space by the matrix

G−1 = (6.26)(
zp(q2)q2 +M2

p , Z
− 1

2
8

(
ω̂(q2)q2 +M2

8p

)
Z

− 1
2

8

(
ω̂(q2)q2 +M2

8p

)
, z8(q2)q2 +M2

8

)
.

Here M2
8p is given to quadratic order in mq by (5.4),

whereas M2
p = m2

p, (5.12), and M2
8 obeys (6.7). We pa-

rameterize corrections from higher derivative terms for
the diagonal elements of (6.26) by the functions zp(q2),
z8(q2). Our normalization of Zp and Z8 is chosen such
that zp(−M2

η ) = 1, z8(−M2
η ) = 1. Higher derivative cor-

rections to the off–diagonal elements of (6.26) result in an
effective q2–dependence of ω̂. For q2 = −M2

η this correc-
tion is formally of third order in the quark masses, whereas
for q2 = −M2

η′ it is of first order (sinceM2
η′−M2

η is counted
as being of zeroth order). In real life, however,M2

η′ andM2
η

are separated by a factor less than four. With the reason-
able assumption that there is no dramatic q2–dependence
of ω̂ we will treat ω̂q2 as a term linear in the quark masses
for both −q2 = M2

η and M2
η′ , and correspondingly count

the higher derivative corrections as terms quadratic in the
quark masses. For a lowest order estimate they can there-
fore be neglected, zp(q2) = z8(q2) = 1, ω̂(q2) = ω̂.

The diagonalization of (6.26) can not be performed in-
dependently of q2 anymore. As a consequence, the effective
octet–singlet mixing angle θp will depend on q2:

tan θp(q2) =

M2
8 −M2

p +
√

(M2
8 −M2

p )2 + 4(M2
8p + ω̂q2)2Z−1

8

2(M2
8p + ω̂q2)Z− 1

2
8

.

(6.27)

The propagator in a diagonal basis corresponds to the
eigenvalues of G, i.e.

G−1
η′,η(q2) = q2 +

1
2
(
M2

p +M2
8
)

(6.28)

±
[

1
4
(
M2

p −M2
8
)2

+
M4

8p

Z8
+
ω̂2

Z8
q4 + 2

ω̂M2
8p

Z8
q2

] 1
2

.

The masses M2
η′ and M2

η are given by the location of the
poles of G for negative q2:

M2
η′,η =

(
1 − ω̂2

Z8

)−1
[

1
2

(
M2

p +M2
8
)− ω̂

Z8
M2

8p

±
{

1
4

(
M2

p −M2
8
)2 + M4

8p

Z8

− ω̂
Z8
M2

8p

(
M2

p +M2
8
)

+ ω̂2

Z8
M2

pM
2
8

} 1
2

]
.

(6.29)

Expanding to quadratic order in the quark masses (with
ω̂ and M2

8p linear in mq) one finds the relations

M2
η′ +M2

η = M2
p +M2

8 − 2ω̂M2
8p

+ω̂2 (M2
p +M2

8
)

(6.30)

M2
η′ −M2

η = M2
p −M2

8 + ω̂2 (M2
p −M2

8
)

+
2

M2
p −M2

8

× [M4
8p − ω̂M2

8p

(
M2

p +M2
8
)

+ ω̂2M2
pM

2
8
]

= M2
η′ +M2

η − 2M2
8 +

2M4
8p

M2
η′ +M2

η − 2M2
8
.

(6.31)

It is remarkable that the relation between M2
η′ −M2

η and
M2

η′ + M2
η becomes independent of ω̂ in this approxima-

tion.
For an experimental determination of the octet–singlet

mixing through the decay of η′ or η into two photons the
relevant quantities will be θp(q2 = −M2

η′) or θp(q2 =
−M2

η ), respectively. The mixing angle depends strongly
on ω̂ if ω̂M2

η′ is of the same order of magnitude as M2
8p.

This leads to a sizeable dependence on q2. If one intends to
compute the octet–singlet mixing angle to quadratic order
in the quark masses one needs in addition contributions
to ω̂ quadratic in mq. They arise from a modification of
the kinetic term through

L(2)
kin =

1
2
ω′

pm∂µpTrh2∂µm+ . . . . (6.32)

This leads to a second order correction for ω̂

ω̂(q2) = −
√

3
[
ωpmv + ω′

pmv
2] fω(q2)
fω(−m2

m)
(6.33)

where fω(q2) contains the higher derivative corrections
where fω(−M2

η ) = 1 and fω(−m2
m) reflects the normal-

ization of ωpm, ω′
pm at q2 = −m2

m. Also the deviation of
Z8 from one has to be included to this order. We note that
for zp(q2) = z8(q2) the formula (6.27) remains valid if ω̂
is replaced by ω̂(q2), (6.33).

7 Mη and Mη′ to quadratic order

We are now ready to address the question of mass rela-
tions for the pseudoscalar mesons to quadratic order in the
quark masses. First, we replace the coupling ν, or equiv-
alently M2

p , by M2
η′ as a phenomenological input param-

eter. Our aim is to compute M2
η and the mixing angle θp

as functions of M2
η′ , M2

π± , M2
K± , M2

K0 , fK and fπ. For
this purpose we use the relations (6.31) and (6.27) which
involve the quantities M2

8 , M2
8pZ

−1/2
8 and ω̂Z

−1/2
8 . The

difference M2
η′ −M2

η is to quadratic order independent of
ω̂. The dependence on Z8 arises only indirectly through
the correction ∼ K8 in M2

8 (6.18) and gives no correction
to quadratic order in the quark masses, (6.20). The mix-
ing angle depends already to linear order on ω̂, but the
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Fig. 1. The plot shows Mη as a function of ωmv for various values of Zp/Zm and ωm = ωm. The solid line corresponds to
Zp/Zm = 1 and the difference in Zp/Zm between two adjacent lines is 0.1. The horizontal dotted line indicates the experimental
value Mη ' 547.5 MeV

difference between Z8 and one is only needed to quadratic
order. For the octet mass term M2

8 we use (6.18) with

12δ9v2 = −1
4
λ2
(
fK± + fK0 − 2fπ

)2
(7.1)

and determine λ2 by (5.14), with M2
η′ replaced by the low-

est order expressionM2
η′+M2

η − 1
3

(
2M2

K± + 2M2
K0 −M2

π±
)
.

To the order relevant for our estimate M2
8p is given by

(5.19). Inserting this into the second expression (6.31) one
finally obtains the relation

M2
η =

1
3
(
2M2

K± + 2M2
K0 −M2

π±
)

+
1
3
(
M2

K± +M2
K0 − 2M2

π±
) fK± + fK0 − 2fπ

fK± + fK0 + fπ

×
(

1 − 1
3

(
Zh

Zm

) 1
2

ωm

(
fK± + fK0 + fπ

)

−2
fK± + fK0 − 2fπ

fK± + fK0 + fπ

)

−2
9

f
2
π(

fK± + fK0 + fπ

)2
×

(
3M2

K± + 3M2
K0 − 2M2

π±
)2[

M2
η′ − 1

3

(
2M2

K± + 2M2
K0 −M2

π±
)]

−2
3

(
Zp

Zm
− 1
) (

fK± + fK0 − 2fπ

)2
(
fK± + fK0 + fπ

)2
× (2M2

K± + 2M2
K0 −M2

π±
)

×
[
1 +

2M2
K± + 2M2

K0 −M2
π±

3M2
η′ − 2M2

K± − 2M2
K0 +M2

π±

]

−2
3

(
Zm

Zp
− 1
)

×
[(

M2
K±+M2

K0

)
(2f

K±+2f
K0−fπ)−M2

π±(f
K±+f

K0)
]2(

3M2
η′ −2M2

K± −2M2
K0

+M2
π±
)
(f

K±+f
K0+fπ)2

−1
3
K8
(
2M2

K± + 2M2
K0 −M2

π±
)
. (7.2)

For ωm = 0 and K8 = 0 we recover the mass relation
(5.21) of Sect. 5. Based on (7.2) one can now evaluate the
corrections ∼ ωm and ∼ K8 quantitatively. Neglecting
higher orders in

(
fK± + fK0 − 2fπ

)
one has the approx-

imate relations

(fK±+fK0−2fπ)
(fK±+fK0+fπ) ' (fK±+fK0−2fπ)

(fK±+fK0+fπ) − 1
2ωmv

fπ

(fK±+fK0+fπ) ' fπ

(fK±+fK0+fπ) + 1
6ωmv .

(7.3)

In the following we also drop K8 since it is formally of
third order in the quark masses. If we linearize (7.2) in

ωmv = 1
3

(
Zh

Zm

)1/2
ωm

(
fK± + fK0 − 2fπ

)
and

(
Zm

Zp
− 1
)

we find

Mη = (535.7 MeV)

×
[
1 − 0.04

(
Zm

Zp
− 1
)

− 0.511ωmv

]
. (7.4)

Within the range Zp/Zm = 1.0±0.2 we see that the correc-
tions ∼ (Zp/Zm − 1) only amount to at most 7 MeV. For
a rough estimate of the size of ωmv we can neglect them.
Comparison of (7.4) with the measured η mass yields for
Zp = Zm

ωmv ' −0.043 . (7.5)

We should note, however, that the linearization in ωmv
is not reliable anymore for ωmv <∼ −0.15. This is demon-
strated in Fig. 1 where we plotMη as a function of ωmv for
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Fig. 2. The plot shows Mp as a function of ωmv for given Mη′ = 957.8 MeV, ωm = ωm and Zp/Zm varying between 0.7 and
1.3 in steps of 0.1. The solid line corresponds to Zp/Zm = 1.0

various values of Zp/Zm. For this plot we have evaluated
all matrix elements in (6.26) to second order in ∆ (keep-
ing the full ωmv–dependence, e.g., in Z−1/2

8 , though) and
diagonalized the matrix without further expansion in ∆.
We have neglected higher derivative contributions which
can not be absorbed into the wave function renormaliza-
tions, i.e. we used zp = z8 = 1, fω = 1. For ω̂ we have used
(8.14) and ωm = ωm. The nonlinear effects due to terms
which are formally ∼ O(∆3) and higher are reflected by
the deviation of the curves in Fig. 1 from the tangents
at ωmv = 0. Because of the important nonlinearities for
ωmv <∼ −0.15 one finds that there is a second solution
with Zp ' Zm, namely for ωmv ' −0.22. For large val-
ues of |ωmv| the η–η′ mixing starts playing an important
role. We will see below that realistic values for the de-
cay rates η → 2γ and η′ → 2γ are only consistent with
this second solution for ωmv. In this region the formal
quark mass expansion does not converge well anymore!
This breakdown of the quark mass expansion is even more
apparent in the relation between M2

η′ and M2
p since linear

and higher order mixing effects occur with the same sign
for this quantity. We plot in Fig. 2 the value of Mp as a
function of ωmv for a fixed value of Mη′ = 957.8 MeV
and various values of Zp/Zm neglecting all higher deriva-
tive corrections to the kinetic terms. As a first observation
one sees that the dependence of Mp on Zp/Zm is rather
week. Furthermore, for ωmv ' −0.22 the ratio M2

p/M
2
η′

has decreased to about 0.77 despite the fact that this ef-
fect is formally of second order in ∆ if M2

p is counted
as O(1). A partial explanation of this strong mixing ef-
fect is related to the observation that for ωmv ' −0.22
the value Mp ' 839 MeV is actually almost comparable
to M8 = 579 MeV. (The values are for Zp/Zm = 1.0.)
A counting where M

2
8/M

2
p = O(∆) becomes therefore

doubtful. As an alternative, we may count the anomaly

contribution to M2
p , i.e. M2

pZp/Zm − m2
m ' (742 MeV)2

also as an effect of order ∆ since its size is not too dif-
ferent from the SU(3) breaking induced by the mass of
the strange quark. In this counting scheme all elements of
the η–η′ mass matrix have the same order of magnitude.
Eigenvalues to a given order in ∆ involve then all matrix
elements to this order and the mixing effects are naturally
large. Nevertheless, since M

2
8/M

2
p = 0.69 is still substan-

tially smaller than one the real situation is somewhere in
the transition region between the two counting rules. Our
approximations to order ∆2 are consistent with both ways
of counting.

In the remaining sections of this paper we will gradu-
ally collect information on the quantities Zm/Zp, ωmv, ω̂
and K8. We should mention that the quantities ωmv and
K8 only involve properties of the effective action for the
pseudoscalar octet. There is, in principle, no information
which goes beyond the one contained in chiral perturba-
tion theory. The quantities Zm/Zp and ω̂ also involve the
η′ and go beyond standard chiral perturbation theory. Of
course, if one were able to predict directly quantities like
ωmv one would gain in addition information on some pa-
rameters appearing in chiral perturbation theory.

8 Kinetic terms in the linear meson model

In this section we discuss in more detail the derivative
terms in the context of the linear σ–model. Our first aim
is to gain information about the size of Zm/Zp, ωm and
ω̂. Expanding (4.6) in powers of Φp, Φs and χp we observe
that only those terms contribute which have both deriva-
tives acting on pseudoscalar fields. Also all fields without
derivatives must be scalars. We can therefore replace in



D.-U. Jungnickel, C. Wetterich: Effective linear meson model 687

(4.4)
∂µΦ −→ i√

2
∂µΦp + i√

6
∂µχp

∂µΦ
† −→ − i√

2
∂µΦp − i√

6
∂µχp

(8.1)

and for the fields without derivatives

Φ −→ σ0 + 1√
2
Φs

Φ† −→ σ0 + 1√
2
Φs .

(8.2)

The terms appearing in Lkin (4.6) have been selected such
that the leading terms contributing to Zp/Zm, ωm and
ωpm have been included. For this purpose we first classify
the invariants contributing to terms with two derivatives
acting on pseudoscalars which are at most linear in Φs.
The reasoning is somewhat lengthy but straightforward:
By partial integration all invariants involve at most one
derivative acting on a given Φ. We can then distribute
the two derivatives either within the same index contrac-
tion (with δab or εabc) with respect to SUL(3) × SUR(3)
or among two different such structures. Traces involving
six and more powers of Φ have at least one combination
Φ†Φ (or ΦΦ†) without derivatives in the chain. By a suit-
able definition of the invariants this may be replaced by(
Φ†Φ− 1

3 Tr(Φ†Φ)
)

and such invariants contribute there-
fore only to higher order in the quark masses. For instance,
combinations involving two factors of Φ†Φ or ΦΦ† (with-
out derivatives) contribute at most to order Φ2

s. The only
invariant involving a trace of six factors Φ† or Φ that may
contribute linearly in Φs is therefore the term ∼ Wϕ.
There are also two terms quartic in Φ with couplings
X+

ϕ , X−
ϕ . To linear order in Φs the structures involving

ε–tensors are the one ∼ Uϕ and terms not listed in (4.6),
namely

Lkin(T )

=
1
2
εa1a2a3εb1b2b3

{
T (1)

ϕ ∂µΦa1b1∂µΦa2b2

×
(
Φa3b4Φ

†
b4a4

Φa4b3 − 1
3
Φa3b3 TrΦ†Φ

)

+T (2)
ϕ ∂µΦa1b1Φa2b2

(
∂µΦa3b4Φ

†
b4a4

Φa4b3

+Φa3b4Φ
†
b4a4

∂µΦa4b3 − 2
3
∂µΦa3b3 TrΦ†Φ

)
+T (3)

ϕ ∂µΦa1b1Φa2b2

×
(
Φa3b4∂µΦ

†
b4a4

Φa4b3 +
1
3
∂µΦa3b3 TrΦ†Φ

)

+T (4)
ϕ

(
Φa1b1Φa2b2∂

µΦa3b4Φ
†
b4a4

∂µΦa4b3

+
1
3
Φa1b1Φa2b2Φa3b3 Tr ∂µΦ†∂µΦ

)

+T (5)
ϕ Φa1b1Φa2b2

(
∂µΦa3b4∂µΦ

†
b4a4

Φa4b3

+Φa3b4∂
µΦ†

b4a4
∂µΦa4b3 + 2∂µΦa3b4Φ

†
b4a4

∂µΦa4b3

)

+
(
Φ ↔ Φ†)} (8.3)

These invariants do not contribute to Zm or Zp but they
may contribute to ωm or ωpm. We treat Lkin(T ) as a higher
order correction to the term ∼ Uϕ and neglect this piece
in the following. Next we turn to the case where the two
derivatives act within two different SUL(3) × SUR(3) in-
variant index structures. Since the invariants ρ, τ2, τ3 and
ξ are at least quadratic in the pseudoscalar fields the terms
∼ ∂µρ∂

µρ, ∂µτ2∂
µτ2, ∂µτ3∂

µτ3, or ∂µξ∂
µξ do not con-

tribute to Zm, Zp, ωm or ω̂. The same holds for mixed
terms like ∂µρ∂

µξ and for index structures of the type
TrΦ†∂µΦTrΦ†Φ∂µΦ

†Φ etc. On the other hand, the pseu-
doscalar invariant ω = i(detΦ − detΦ†) contains a term
linear in the pseudoscalar fields

∂µω = −
√

6σ2
0∂µχp +

1
2
√

6
TrΦ2

s∂µχp

+σ0 TrΦs∂µΦp − 1√
2

TrΦ2
s∂µΦp + . . . . (8.4)

More generally, we can construct invariants with a possible
contribution to Zp/Zm, ωm or ωpm by Lorentz contraction
of CP–odd factors like ∂µω,

iεa1a2a3εb1b2b3
{
∂µΦa1b1Φa2b2Φa3b4Φ

†
b4a4

Φa4b3

−∂µΦ
†
a1b1

Φ†
a2b2

Φ†
a3b4

Φb4a4Φ
†
a4b3

}
,

iεa1a2a3εb1b2b3∂µ

{
Φa1b1Φa2b2Φa3b4Φ

†
b4a4

Φa4b3

−Φ†
a1b1

Φ†
a2b2

Φ†
a3b4

Φb4a4Φ
†
a4b3

}
,

iεa1a2a3εb1b2b3
{
Φa1b1Φa2b2Φa3b4∂µΦ

†
b4a4

Φa4b3

−Φ†
a1b1

Φ†
a2b2

Φ†
a3b4

∂µΦb4a4Φ
†
a4b3

}
.

Within these structures we may replace subsets ΦΦ†Φ by
the combination ΦΦ†Φ − 1

3ΦTrΦ†Φ which is ∼ Φs. We
will keep here only the term which is ∼ ∂µω∂

µω and con-
sider the other contractions as higher order corrections to
the term ∼ Ṽϕ. The phenomenological analysis below will
indicate that the “anomaly” terms ∼ Uϕ and ∼ Ṽϕ are
not very important. This justifies to neglect corrections
to them. We have also included in (4.6) some invariants
which do not contribute to Zp/Zm, ωm and ωpm. This
is partly for the purpose to demonstrate that not much
can be learned about the ratio Zh/Zm from exploiting the
symmetries of the linear sigma model.

The contribution of the term ∼ Ṽϕ to Zm, Zp and ω̂
can be read off from

Lkin(Ṽϕ) =
1
2
Ṽϕ∂

µω∂µω

= 3Ṽϕσ
4
0∂

µχp∂µχp −
√

6Ṽϕσ
3
0∂

µχp TrΦs∂µΦp

+
√

3Ṽϕσ
2
0∂

µχp TrΦ2
s∂µΦp + . . . . (8.5)

Next we turn to the terms ∼ X−
ϕ and X+

ϕ in (4.6). Where-
as X+

ϕ gives no contribution linear in the quark masses the
term ∼ X−

ϕ yields

Lkin(X−
ϕ ) =

1
2
X−

ϕ σ
2
0 (Tr ∂µΦp∂µΦp + ∂µχp∂µχp)
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+
1√
2
X−

ϕ σ0 TrΦs∂
µΦp∂µΦp

+
2√
6
X−

ϕ σ0∂
µχp TrΦs∂µΦp

+
1

2
√

3
X−

ϕ ∂
µχp TrΦ2

s∂µΦp . (8.6)

Similarly, one obtains

Lkin(Wϕ) =
1

2
√

2
Wϕσ

3
0 TrΦs∂

µΦp∂µΦp

+
1√
6
Wϕσ

3
0∂

µχp TrΦs∂µΦp

+Wϕσ
2
0

{
3
8

TrΦ2
s∂

µΦp∂µΦp

− 1
24

TrΦ2
s Tr ∂µΦp∂µΦp

+
1
4

TrΦs∂
µΦpΦs∂µΦp +

5
4
√

3
∂µχp TrΦ2

s∂µΦp

+
1
6

TrΦ2
s∂

µχp∂µχp

}
+ . . . . (8.7)

For the piece ∼ Uϕ we use

εa1a2a3εb1b2b3 = δa1b1δa2b2δa3b3 + δa1b2δa2b3δa3b1

+δa1b3δa2b1δa3b2 − δa1b1δa2b3δa3b2

−δa1b3δa2b2δa3b1 − δa1b2δa2b1δa3b3 (8.8)

and find

Lkin(Uϕ) = Uϕσ0

(
1
2

Tr ∂µΦp∂µΦp − ∂µχp∂µχp

)

− 1√
2
Uϕ TrΦs∂

µΦp∂µΦp

+
1√
6
Uϕ∂

µχp TrΦs∂µΦp . (8.9)

In our truncation no other second derivative invariant
(except the one ∼ Zϕ) contributes to Zm, Zp ωm, ωpm or
ω′

pm. Combining (8.5), (8.6) and (8.9) with the term ∼ Zϕ

and comparing with (4.9), (6.1), (6.32) and (6.33) yields

Zm = Zϕ +X−
ϕ σ

2
0 + Uϕσ0

Zp = Zϕ +X−
ϕ σ

2
0 + 6Ṽϕσ

4
0 − 2Uϕσ0

ωm =
(
X−

ϕ σ0 +
1
2
Wϕσ

3
0 − Uϕ

)
Z

− 1
2

h Z−1
m

ωpm =
(

2√
6
X−

ϕ σ0 +
1√
6
Wϕσ

3
0 −

√
6Ṽϕσ

3
0 +

1√
6
Uϕ

)

×Z− 1
2

p Z
− 1

2
h Z

− 1
2

m

ω′
pm =

(
1

2
√

6
X−

ϕ +
5

4
√

6
Wϕσ

2
0 +

√
6

2
Ṽϕσ

2
0

)

×Z− 1
2

p Z−1
h Z

− 1
2

m

ω̂ = − (fK± + fK0 − 2fπ

) [ 1
3
√

2
Uϕ +

2
3
√

2
X−

ϕ σ0

+
1

3
√

2
Wϕσ

3
0 −

√
2Ṽϕσ

3
0 +

fK± + fK0 − 2fπ

fK± + fK0 + fπ

×
(

1
3
√

2
X−

ϕ σ0 +
5

6
√

2
Wϕσ

3
0 +

√
2Ṽϕσ

3
0

)]

×Z− 1
2

p Z−1
m . (8.10)

We observe the relation

ωpm =
1√
6

[
2
(
Zm

Zp

) 1
2

ωm

+
1
σ0

(
Zm

Zp
− 1
)(

Zp

Zh

) 1
2
]

(8.11)

which is independent of the values of X−
ϕ , Wϕ, Uϕ and Ṽϕ.

It leads to an estimate of ω̂ to lowest order in the quark
masses:

ω̂(1) =
√

2
(
Zm

Zp

) 1
2

×



(

Zm

Zh

) 1
2
v

2σ0

(
Zp

Zm
− 1
)

− ωmv


 . (8.12)

If we furthermore assume |6Ṽϕσ
2
0| , | 52Wϕσ

2
0| � X−

ϕ (see
Sect. 10) we find11 (for Ṽϕ = 0, Wϕ = 0)

ω′
pm =

1
2
√

6σ0

(
Zm

Zp

) 1
2 Zm

Zh

×
[
ωm

(
Zh

Zm

) 1
2

+
1

3σ0

(
1 − Zp

Zm

)]
. (8.13)

This leads to an estimate to second order in ∆

ω̂(2) = ω̂(1) − 1
2
√

2

(
Zm

Zp

) 1
2

(
Zm

Zh

) 1
2
v

σ0

×


ωmv +

(
Zm

Zh

) 1
2
v

3σ0

(
1 − Zp

Zm

) . (8.14)

These results can be used for a computation of the η–η′
mixing angle to second order in the quark masses. If we ne-
glect the higher derivative corrections (ωm = ωm, K8 = 0,
zp = z8 = fω = 1) the mixing angles θp(η) and θp(η′) rele-
vant for the two photon decay of the η and η′, respectively,
depend on two parameters ωmv and Zp/Zm − 1. We plot

11 The coupling ω′
pm cannot be expressed in terms of ωm and

Zm − Zp. This reflects that the kinetic invariants are linearly
independent
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Fig. 3. The plots show the pseudoscalar
mixing angles θp(η) and θp(η′) as func-
tions of ωmv for various values of Zp/Zm

and ωm = ωm. The solid line corre-
sponds to Zp/Zm = 1 and the difference
in Zp/Zm between two adjacent lines is
0.1

in Fig. 3 these quantities as functions of ωmv for various
values of Zp/Zm−1. Assuming

∣∣∣ Zp

Zm
− 1
∣∣∣ < 1

4 and compar-

ing this value with
∣∣∣∣ 13 ( Zh

Zm

)1/2
ωm(fK± + fK0 + fπ)

∣∣∣∣ '∣∣∣ωmv
2fK+fπ

2(fK−fπ)

∣∣∣ > 1
3 , (7.5), we find that the first contribu-

tion is smaller than the second one. In the approximation
Zp = Zm the quantity ω̂ is simply related to ωmv by

ω̂(1) = −
√

2ωmv ,

ω̂(2) = −
√

2ωmv


1 +

(
Zm

Zh

) 1
2
v

4σ0


 . (8.15)

The existence of a relation between ω̂ and ωm is crucial
for the predictive power of our model since it is necessary
in order to relate the η–η′ mixing angle to other observ-
ables. Within our truncation and to lowest order in ∆ the
relation (8.12) is a pure symmetry relation without any
assumption on the values of the couplings X−

ϕ , Wϕ, Uϕ,
Ṽϕ! In contrast, the kinetic term of the scalar mesons is
independent of Ṽϕ, Uϕ or X−

ϕ , whereas Zh receives contri-
butions ∼ X+

ϕ , etc. No new relations can be obtained in
this way.

We observe that the couplings Uϕ and Ṽϕ violate the
axial UA(1) symmetry and are therefore connected to ef-
fects from the axial anomaly. Anomaly contributions to
kinetic terms of the pseudoscalar octet are often counted
as higher order corrections. If we decide to do so we obtain
the leading order relations

Zp = Zm

ωm = X−
ϕ σ0Z

− 1
2

h Z−1
m .

(8.16)

In this approximation only the kinetic term ∼ X−
ϕ is essen-

tial. The importance of X−
ϕ is also manifest in the leading

mixing approximation. Only this term is generated by the
mixing with the divergence of the axialvector field ∂µρ

µ
A

(“partial Higgs effect”). In fact, the effective action for the
(pseudo)scalars contained in Φ receives contributions from
the exchange of other particles. Prominent candidates are,
of course, the vector and axialvector fields. We have com-
puted in Appendix B the contributions from the exchange
of the vector and axialvector meson octets as well as the
associated 0−+ and 0+− states corresponding to the di-
vergence of the (axial)vector fields. Up to order Φ4 this

exchange only contributes to derivative terms. In terms of
the couplings which contribute to the kinetic terms to lin-
ear order in ∆ only X−

ϕ gets a negative contribution from
the exchange of the 0−+ state whereas all other couplings
remain unaffected. We find a large effect

ω(ρ)
m v ' −0.15 . (8.17)

Comparison of this value with Figs. 1–2 indicates a large
η–η′ mixing in a range where nonlinear effects in ωmv are
already important!

9 Decay constants of η and η′

The decay constants fπ0 , fη and fη′ are experimentally
determined from the partial decay width of the π0, η and
η′ into two photons

Γ (η → 2γ) =
α2

64π3

M3
η

f2
η

(9.1)

and similarly for η′ and π0. The experimental values for
the decay widths are [19]

Γ (π0 → 2γ) = (7.78 ± 0.56) eV
Γ (η → 2γ) = (0.46 ± 0.04) keV
Γ (η′ → 2γ) = (4.26 ± 0.19) keV (9.2)

which yields (fπ = (92.4 ± 0.3) MeV)(
fπ0

fπ

)exp

' 1.00 ± 0.04(
fη

fπ

)exp

' 1.06 ± 0.05(
fη′

fπ

)exp

' 0.81 ± 0.02 . (9.3)

To lowest order in the quark mass expansion the decay
constant12 fη is related to fK = fπ by SU(3) symmetry
(cf. Appendix A)

f (0)
η =

√
3fη8 =

√
3fπ . (9.4)

12 We use for fη and fη′ the conventions of [19], with the warn-
ing that factors

√
3 and

√
3/8 appear here as compared to a

perhaps more natural convention based on SU(3) symmetry. In
the limit of exact SU(3) symmetry the quantity corresponding
to fπ is fη8
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Similarly, for Zp = Zm one finds for fη′

f
(0)
η′ =

√
3
8
fη′0 =

√
3
8
fπ . (9.5)

The experimental values (9.3) differ substantially from
this estimate. In Appendix A we have computed ((A.24)–
(A.26)) the corrections to fη8 and fη′0 as well as the cor-
responding constants for the singlet current in the η (fη0)
and the octet current in the η′ (fη′8). Expanding the Z1/2

factors to linear order in ωmv and neglecting additional
higher derivative corrections one obtains the ratios

fη8

fπ
=

1
3fπ

[
2fK± + 2fK0 − fπ

+
1
2
ωmv (fK± + fK0 − 2fπ)

+
1
2
K8 (2fK± + 2fK0 − fπ)

]

fη′0

fπ
=

1
3fπ

[
fK± + fK0 + fπ

−1
4
ωmv (fK± + fK0 − 2fπ)

](
Zp

Zm

) 1
2

. (9.6)

Extracting the terms linear in the quark masses and ne-
glecting isospin violation yields

fη8

fπ
=

4fK − fπ

3fπ
' 1.3 (9.7)

fη′0

fπ
=

2fK + fπ

3fπ

(
Zp

Zm

) 1
2

' 1.15
(
Zp

Zm

) 1
2

. (9.8)

We note that this estimate for fη8/fπ agrees well with the
one obtained in chiral perturbation theory (fη8/fπ)χPT '
1.25 [2,20]. Denoting by θp(η) ≡ θp(q2 = −M2

η ) and
θp(η′) ≡ θp(q2 = −M2

η′) (see (6.27)) the octet–singlet
mixing angles relevant for the two photon decay of the
η and η′, respectively, one can compute [20] the effective
decay constants for these decays from

1
fη

=
1√
3

(
cos θp(η)
fη8

−
√

8 sin θp(η)
fη0

)
(9.9)

1
fη′

=
1√
3

(
sin θp(η′)
fη′8

+
√

8 cos θp(η′)
fη′0

)
(9.10)

Here we have neglected the mixing of π0 with η and η′
which induces corrections to the decay constants ∼ w2.
Since also Zπ0 equals Zπ up to corrections ∼ w2 we will
not distinguish between fπ0 and fπ in this paper.

We plot in Fig. 4 the decay constants fη and fη′ as
functions of ωmv for various values of Zp/Zm, assuming
ωm = ωm. It is obvious from these plots that no satis-
factory solution exists for the value ωmv ' −0.05, cor-
responding to the first solution for Mη (cf. Fig. 1) which

remains within the range of convergence of the quark mass
expansion. On the other hand, it is encouraging that for
the second solution ωmv ' −0.22 (Zp/Zm = 1) fη is al-
ready very close to the experimentally allowed window!
The deviation of fη′ from its experimental value by around
25% is not completely unexpected for the approximations
employed so far. In fact, already the uncertainty of a first
order computation of fη and fη′ in powers of quark masses
should be of the order of 10%. On top of this, the neglect
of higher derivative terms is less accurate for q2 = −M2

η′
and one expects a less convergent expansion for fη′ . If
Zp/Zm is treated as a second free parameter we see that
ωmv = −0.20, Zp/Zm = 0.9 provides a solution for which
fη and fη′ are within 10% of the experimentally allowed
windows. Furthermore, these values of ωmv are quite close
to the ones estimated in Appendix B from the exchange
of higher 0−+ states (cf. (8.17))! We conclude that all ob-
servations fit together in a picture with large mixing in
the η–η′ sector. As discussed at the end of Sect. 7 the
anomaly term comes out relatively small in this case. The
naive quark mass expansion is then expected to converge
well only for the flavored mesons whereas its convergence
is unsatisfactory in the η–η′ sector. There it can be re-
placed by a modified expansion where Mp is also counted
as O(∆).

Apparently, the kinetic term ∼ X−
ϕ which is induced

by the mixing with the higher 0−+ multiplet plays a very
important role in our picture. One is tempted to assume
that this term dominates the rich structure in the kinetic
terms for the pseudoscalars. The hypothesis that all devi-
ations from a standard kinetic term for the pseudoscalars
(i.e., (2.1) with Zp = Zm) are due to mixing leads to a
highly predictive scheme. In the limit where X−

ϕ is inde-
pendent of momentum this leads to Zp ' Zm, ωm ' ωm.
It is far from trivial that for Zp ' Zm and ωm ' ωm

there exists a value ωmv = −0.20 for which the quantities
Mη, fη and fη′ are all compatible with observation! The
“robustness” of these “predictions” can be estimated from
table 6 in Sect. 13 where we also give numbers for vari-
ous values of Zp/Zm and ωm/ωm. A more detailed study
of the effect of mixing with the higher 0−+ states can be
found in Appendix C. In particular, the coupling X−

ϕ be-
comes effectively momentum dependent due to propagator
effects. This leads to

(i) a contribution to a q4–kinetic term and therefore to
(ωm − ωm)/ωm ' 0.1 (cf. (12.3));

(ii) an effective momentum dependence of ω̂ which gets
multiplied by the factor fω = (M2

P −M2
η )/(M2

P + q2)
with MP >∼ 2000 MeV;

(iii) similar contributions to zp and z8, (C.13) in (6.26);
(iv) a correction to fη′ (A.26) given by (C.14);
(v) an effective Zp (normalized here for q20 = −M2

η ) obey-
ing Zp/Zm = 0.99.

Due to the large uncertainty in the value ofMP relevant in
the η–η′ sector we have not included these higher deriva-
tive effects in the Figs. 1–4. A quantitative discussion can
be found in Sects. 12 (Fig. 8), 13 and Appendix C.
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Fig. 4. The plots show the ratios fη/fπ and fη′/fπ as functions of ωmv for various values of Zp/Zm and ωm = ωm. The solid
lines correspond to Zp/Zm = 1 and the difference in Zp/Zm between two adjacent lines is 0.1. The experimentally allowed
windows (1σ) for both quantities are bounded by the horizontal solid lines

10 Expansion in the chiral condensate

There are various scales characteristic for the amount of
spontaneous chiral symmetry breaking: the chiral conden-
sate |〈ψψ〉|1/3 ' 200 MeV, the pion decay constant fπ '
90 MeV and the constituent quark mass mq ' 300 MeV.
All these scales are typically smaller than the character-
istic scale for the formation of the mesonic bound states,
kϕ >∼ 600 MeV [5,6] or typical mesonic mass scales un-
related to the Goldstone phenomenon — the latter be-
ing around 1 GeV with the lowest one given by13 Mρ0 =
770 MeV. The question emerges if the typical scale appear-
ing in the parameters ν, X−

ϕ , λ3, etc. is larger than charac-
teristic scales associated with chiral symmetry breaking.
Could it be that chiral symmetry breaking is related to
13 The ρ–meson is perhaps somewhat special because of ap-
proximate gauge symmetry, see Appendix B

an additional small parameter leading to a suppression of
contributions with high powers of σ0? The existence of a
small parameter associated to σ0 would enhance the pre-
dictive power of the linear sigma model since the terms
with lower powers of σ0 would dominate. Together with a
derivative expansion it would allow to classify invariants
according to their dimension with a suppression of higher
dimensional operators.

Within the linear sigma model we observe distinct
mass scales of very different origin: Whereas the expecta-
tion value σ0 measures the strength of spontaneous chiral
symmetry breaking, the scale ν indicates the size of the
explicit breaking of the axial UA(1) because of the chi-
ral anomaly. Furthermore, there are hadronic mass scales
which are not directly related to chiral symmetry breaking
or the axial anomaly as, for example, the string tension
or the glueball masses. One expects that the last type of
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scales dominates the dimensionfull parameters in the ef-
fective potential and the kinetic terms in the limit of van-
ishing anomaly and σ0 = 0. Since for mass terms etc. σ0
is multiplied by some dimensionless coupling constant, a
typical parameter for testing the convergence of a σ0–
expansion could be xσ = λ2σ0/ν. Using the values of the
parameters determined in Sect. 5 yields xσ ' 0.3 whereas
including the quark mass corrections to the kinetic terms
gives xσ ' 0.2. This seems indeed to allow for the possi-
bility that an expansion in powers of σ0 does not converge
too badly. We will see that this picture is confirmed by
the size of other dimensionless ratios involving powers of
σ0.

In order to make a guess for the size of contributions
with higher powers of σ0 we first note that the smallness
of σ0 is partly due to the smallness of Zm [6]. Since the
physics cannot depend on the choice of the scaling for the
field Φ, only ratios which are independent of Zm can ap-
pear in measurable quantities. This includes combinations
like λ2σ0/ν = λ2σ0/ν, λ3σ

3
0/ν = λ3σ

3
0/ν, X

−
ϕ σ

2
0/Zm,

Uϕσ0/Zm, Ṽϕσ
4
0/Zm. The physical scales hidden in the

renormalized parameters can be better appreciated if we
choose (somewhat arbitrarily) a fixed Z

(0)
m such that the

dimensionless couplings are of order one, say Z(0)
m = 0.15

such that λ
(0)
2 ' λ2/50. With this scaling of the field

one has σ
(0)
0 = σ0(Z

(0)
m )−1/2 ' 137 MeV and ν(0) =

ν(Z(0)
m )3/2 ' 540 MeV. We will now assume that dimen-

sionfull parameters like λ
(0)
3 are given by powers of a char-

acteristic scale which we take to be around 700 MeV,
i.e. λ

(0)
3 ' (700 MeV)−2, X−(0)

ϕ ' (700 MeV)−2. This sug-
gests typical ratios |λ3σ

3
0/ν| ' 0.015, |λ3σ

2
0/λ2| ' 0.08,

|X−
ϕ σ

2
0/Zm| ' 0.25, |Uϕσ0/Zm| ' 1.3, |Ṽϕσ

4
0/Zm| ' 0.01.

Obviously, these numbers can only be used as rough
guesses. There may be additional small coefficients —
this is obviously necessary for the contribution ∼ Uϕ if
Zp is in the vicinity of Zm (see (8.10) — or relatively
large group theoretical or dynamical factors. If the contri-
bution from Uϕ does not dominate ωm we may estimate
|X−

ϕ σ
2
0/Zm| ' |ωmZ

1/2
h σ0| ' 0.5 (for ωmv = −0.20) which

is somewhat larger but still compatible with the above
guess. We conclude that the σ0–expansion converges at
best slowly. For low powers of σ0 group theoretical factors
or dynamically small quantities (i.e. Z(0)

m , Uϕσ0) remain
very relevant. Nevertheless, we find it very unlikely that
terms with high powers of σ0 dominate those with low
powers. Even the conservative assumption that terms with
high powers of σ0 are bounded in size by the strength of
terms with lower powers has important implications!

As an example we compare the contributions ∼ 9
4σ0λ2

and ∼ 3σ3
0λ3 to the cubic coupling γ6 (4.34) which deter-

mines the mass split within the scalar octet. If we assume
that the second term does not exceed in size the first one
we obtain the bound

γ6 <
1
4

(18σ0λ2 − ν)
(
Zm

Zh

) 3
2

' 17.1 GeV (10.1)

where we have used λ2 = 21.3, ν = 6447 MeV and Zh/Zm

= 0.35 (see Sect. 13). With the help of (2.19) this can be
transformed into a bound for the mass difference between
the K∗

0 and a0 mesons in the scalar octet

M
2
K∗

o
−M

2
ao

= 3γ6v < 0.7 GeV2 . (10.2)

This relatively conservative bound seems to disfavor the
interpretation of the a0(980) resonance as a member of
the same octet as the K∗

0 (1430), since in this case the
difference in mass squared would have to exceed 1 GeV2.
In simpler words, it seems at first sight unlikely that a
strange quark mass of about 180 MeV produces a mass
difference between strange and non–strange scalar mesons
of 450 MeV. Yet, we notice that (10.2) is subject to quark
mass corrections from kinetic terms, and we will come
back to this issue in Sect. 11.

Before closing this section let us comment on the ques-
tion if the limiting case σ0 → 0 can be used as an ex-
pansion point within a generalized class of linear sigma
models. (Of course, the sigma model corresponding to
low–energy QCD has a fixed value of σ0.) Let us consider
an effective quark–meson theory which is supposed to be
valid for momentum scales below some cutoff (or compos-
iteness) scale kϕ. The “classical action” of such a model
is parameterized by a potential and, in particular, a mass
term m2(kϕ). (Quantum fluctuations of modes with mo-
menta q2 < k2

ϕ change the form of the effective action and
lead to an effective potential as parameterized by (4.22)).
The size of σ0 can be influenced by the meson mass term
m2(kϕ) at the scale kϕ. If the phase transition associated
to a variation of m2(kϕ) were of second order the order
parameter σ0 could be arbitrarily small. An expansion in
powers of σ0 would then always be meaningful for small
enough14 σ0. For three flavors the anomaly induces a first
order transition and excludes arbitrarily small values of
σ0. Nevertheless, for small σ0 a polynomial expansion of
U(σ) should be meaningful and we may stop after the
term quartic in σ. In the limit of equal quark masses the
potential (4.22) gives

U = −3m2
gσ

2
0 − 1

2
νσ3

0 +
9
2
λ1σ

4
0

+
(

3m2
g +

3
2
νσ0 − 9λ1σ

2
0

)
σ2 − νσ3 +

9
2
λ1σ

4 .

(10.3)

The requirement U(σ0) < U(0) implies a lower bound

σ2
0 >

1
9λ1

(
νσ0 + 6m2

g

)
(10.4)

whereas the positivity of the mass term at σ0 requires

σ2
0 >

1
12λ1

(
νσ0 − 2m2

g

)
. (10.5)

14 At nonvanishing temperature σ0(T ) typically decreases as
T increases. For a second order high temperature phase tran-
sition one can always expand such a system for a very small
even though perhaps not arbitrarily small value of σ0. In the
limit σ0 → 0 one may encounter nonanalyticities associated to
the critical three dimensional behavior at the transition
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On the other hand, the dimensionless coupling λ1 is typ-
ically bounded from above as a result of the “triviality”
of Φ4–theory. (More precisely, the infrared interval of al-
lowed renormalized quartic couplings is bounded.) Com-
paring (10.5) with the definition of xσ we find that for
vanishing quark masses (m2

g = 0) the expansion coefficient
must obey xσ > λ2

12λ1
and can therefore not be arbitrar-

ily small. Despite this caveat there seems to be enough
room for a meaningful σ0–expansion. It is interesting to
note that for given σ0 the inequalities (10.4) and (10.5)
can also be used to establish lower bounds for λ1 which
hold for a polynomial approximation (10.3). Taking ν, m2

g

and σ0 from Sect. (13) one finds λ1 > 48.9 and λ1 > 1.1,
respectively.

11 Mass relations for the scalar octet

In this section we want to determine the masses of the
members of the 0++ octet contained in Φ. Together with
the 0++ singlet these scalars play for spontaneous chiral
symmetry breaking the same role as the Higgs scalar in the
electroweak theory. Since the isospin singlet member of the
octet has the same quantum numbers as a possible scalar
glueball the determination of its mass is also important for
the identification of glueball state candidates. We restrict
most of the discussion to the linear order in an expansion
in powers of quark masses and we neglect isospin violation.
The quark mass corrections to the kinetic terms for the
scalar octet to linear order in ∆ arise from an interaction
analogous to (6.1)

L(1,s)
kin =

1
4
ωh Trh∂µh∂µh . (11.1)

Since in the linear sigma model several of the general-
ized kinetic terms (4.6) contribute to this invariant we
will treat ωhv as a free parameter to order ∆. In addition,
we will consider a particular term contributing to second
order in ∆

L(2,s)
kin =

1
4
ζh Tr {(h∂µh− ∂µhh) (h∂µh− ∂µhh)} .

(11.2)
This term is induced by the exchange of the scalar state
contained in the divergence of the vector meson field ∂µρ

µ
V

(cf. Appendix B) with a sizeable coefficient ζhv2 >∼ 0.02.
Combining (11.1) and (11.2) and neglecting terms
∼ ωhζhv

3 this leads to different wave function renormal-
izations for a0, K∗ and f8

Zao
= 1 − ωhv

ZK∗
o

=
(
1 + 1

2ωhv
) (

1 − 9ζhv2
)

Zf8 = 1 + ωhv .
(11.3)

We next have to include the effects of higher derivative
terms using the definition of the wave function renor-
malization constants (6.11). The discussion is completely
analogous to Sect. 6 and the dominant higher derivative
terms lead to a replacement of ωh by ωh = ωh+2∆ZK∗

o
/v.

(Here we have adopted a definition of Zh such that 2ZK∗
o
+

Zao = 1 for ζh = 0.) We note that the effects from a non-
vanishing ζh can be absorbed in an effective mass term

M̂2
K∗

o
= M2

K∗
o

(
1 − 9ζhv2) . (11.4)

Up to the replacement of the physical mass M2
K∗

o
by the

ζh dependent quantity M̂2
K∗

o
our discussion systematically

only includes terms linear15 in ∆.
From (5.8) we now obtain

m2
h =

1
3

[
2M

2
K∗

o
+M

2
ao

]
=

1
3

[
2M̂2

K∗
o

+M2
ao

+ ωhv
(
M̂2

K∗
o

−M2
ao

)]
. (11.5)

Hence, the linear quark mass corrections to the kinetic
terms ∼ ωh modify m2

h only to quadratic order in ∆. For
Mao

= 1320(983) MeV, ωh = 0 and ζh = 0 we find16

mh ' 1394(1298) MeV. The dominant correction to the
lowest order relation is most likely due to the term ∼
ζh. For ζhv2 = 0.02 one obtains mh = 1303(1200) MeV
whereas ζhv2 = 0.04 yields already a large shift to mh =
1206(1093) MeV. We are now in a position to compute
Zh/Zm from (5.16). For ωmv = −0.20 we obtain

Zh

Zm
' 0.39(0.45) , 0.45(0.53) , 0.53(0.64) (11.6)

where the three values correspond to ζhv2 = 0, 0.02, 0.04.
Comparing with (5.17) we see that the quark mass cor-
rections to the kinetic terms strongly influence the deter-
mination of Zh/Zm. We conclude that 1 − Zh

Zm
can not be

treated as a very small number. The difference between Zh

and Zm has to be included for any systematic discussion
of the scalars within the linear sigma model! The neglect
of this difference in earlier works [7]–[14] partially explains
the quantitative differences with our results.

We are now ready to reexamine the mass splitting in
the scalar octet (10.2). Including the corrections arising
from (11.3) we find

M̂2
K∗

o
−M2

ao
=

3γ6v − 3
2m

2
hωhv

1 − 1
2ωhv − 1

2 (ωhv)2
. (11.7)

One sees that large negative values of ωhv can consid-
erably increase the mass difference between the K∗

0 and
the a0 for given γ6v. The same holds for ζhv2 > 0. This
weakens the argument of the preceding section against the
association of the a0 meson with the resonance a0(980). In
Fig. 5 we plot Mao as a function of ωhv for Zp = Zm and
three different values of ζhv2, with bands corresponding
to ranges of λ3 between σ2

0λ3 = −λ2/4 (lower curves) and

15 The exception from a systematic procedure of keeping only
terms in the effective action for scalars that contribute to linear
order in ∆ is motivated by the well identified mechanism that
induces a sizeable ζhv2 (cf. Appendix B)
16 A similar observation holds in the pseudoscalar sector for
m2

g and we obtain mg ' 393 MeV
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Fig. 5. The plot shows Mao as a function of ωhv for Zp/Zm = 0.9, ωmv = ωmv = −0.20 and three values of ζhv2 = 0 (solid
lines), 0.02 (dashed lines) and 0.04 (dotted lines). The upper curve in each band corresponds to σ2

0λ3 = −λ2/4 and the lower
one to σ2

0λ3 = λ2/4

σ2
0λ3 = λ2/4 (upper curves). Here we have used (5.18)

together with

γ6

γ2
=

1
2

M̂2
K∗

o
−M2

ao
+ ωhv

(
1
2M̂

2
K∗

o
+M2

ao

)
M2

K −M2
π + ωmv

( 1
2M

2
K +M2

π

) . (11.8)

In fact, large quark mass corrections to the scalar kinetic
terms seem the only plausible possibility for the choice
of the a0(980). This would indicate a large mixing be-
tween two–kaon states and the a0(980) (see Appendix C).
Consequently, it could explain why the a0(980) behaves
in many respects similarly to a qqqq state even though it
may belong to an octet of qq states. We should also point
out that for large values of |ωhv| the quark mass expan-
sion becomes questionable in the scalar sector. From the
linearized expressions

M2
ao

= m2
h − 2

(
γ6v − 1

2
m2

hωhv

)

M̂2
K∗

o
= m2

h +
(
γ6v − 1

2
m2

hωhv

)
(11.9)

we infer the ratio of the first order correction for M2
ao

as
compared to m2

h

2
(
γ6v − 1

2m
2
hωhv

)
m2

h

=
2
3

M̂2
K∗

o
−M2

ao

m2
h

(11.10)

' 0.10(0.43) , −0.03(0.33) ,
−0.20(0.19)

for ζhv2 = 0, 0.02, 0.04. Apparently, for ζhv2 = 0 a good
convergence of the quark mass expansion is only real-
ized for the assignment a0(1320). For larger values of ζhv2

as infered from the leading mixing approximation in Ap-
pendix B a reasonable convergence can also be obtained
for a0(980).

Summarizing the various aspects of the problem of the
correct assignment of the isotriplet belonging to the same
octet as the K∗

0 (1430) we may state that the association
a0(1320) would make the understanding easier only in case
of a standard kinetic term for h. Taking into account non-
minimal kinetic terms there is no conclusive argument to
rule out the a0(980) as a member of the scalar octet. For
the latter assignment one expects important mixing ef-
fects with two–kaon states. Actually, such large mixing
effects concern presumably only the a0 and not the other
members of the scalar octet. It may therefore be preferable
not to include these mixing effects into the parameter ωhv
appearing in (11.3) but to treat them as additional correc-
tions to the a0 propagator only. In this case the size of ωhv
is expected to remain small, |ωhv| <∼ 0.1, but the physical
mass of the a0 is related to Ma0 by an unknown factor
reflecting the mixing. The value of Mao

appearing in for-
mulae like (11.5) or (11.11) below should then be replaced
by an effective mass M̂ao

somewhat above 1 GeV (say
around 1100 MeV). A natural mechanism of “threshold
mass shifting” leading to a physical mass Mao

= 980 MeV
is described in Appendix C.

We finally want to show that the Gell-Mann–Okubo
type mass relation (2.22) is not affected by linear quark
mass corrections to the kinetic terms. Inserting M2

ao
=

M
2
ao
Z−1

ao
, M2

K∗
o

= M
2
K∗

o
Z−1

K∗
o
, M2

f8
= M

2
f8Z

−1
f8 into (2.22)

one obtains to linear order in ωhv the relation

M2
f8

=
4
3
M̂2

K∗
o

− 1
3
M2

ao
− 2

3
ωhv

(
M̂2

K∗
o

−M2
ao

)
. (11.11)

The correction to the relation (2.22) is indeed only quadra-
tic in∆. For givenMao

= 1320 MeV andMK∗
o

= 1430 MeV
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Fig. 6. The plot shows Mf as a function of Mao according to the scalar Gell-Mann–Okubo relation (2.22) with (11.3),
Zp/Zm = 0.9, ωmv = ωmv = −0.20 and fixed MK∗

o
= 1430 MeV. The bands correspond to values of λ3σ

2
0 between −λ2/4

(upper curves) and λ2/4 (lower curves) and we give results for ζhv2 = 0 (solid lines), 0.02 (dashed lines) and 0.04 (dotted lines)

the symmetry relation (11.11) yields for ζhv2 = 0

Mf8 ' 1465 MeV . (11.12)

On the other hand, for ζhv2 = 0.02 and M̂ao = 1100 MeV
we find

Mf8 ' 1354 MeV . (11.13)

Taking into account the uncertainties from the mixing
with the scalar singlet s both values are consistent with
the observed broad resonance17 f0(1300). In Fig. 6 we have
plottedMf8 as a function18 of M̂ao

in order to demonstrate
the relative insensitivity of Mf8 on the identification of
the a0 meson. For this purpose we have used ζh = 0, 0.02
and 0.04 and λ3σ

2
0 = ±λ2/4. For each set of parameters

we have determined ωhv from Fig. 5. Figure 6 demon-
strates that for ζhv2 >∼ 0.02 values ofMf8 below 1500 MeV
are preferred. On the other hand, a value of Mf8 below
1100 MeV would require a very substantial mixing of K∗

0
with a state in ∂µρ

µ
V (ζhv2 >∼ 0.04.). The identification of

either the f0(1590) or the f0(980) with the octet seems
therefore disfavored.

In this context it is perhaps interesting to note that
the branching ratio [15]

R =
Γ (f0(1300) → 2π)
Γ
(
f0(1300) → KK

) ' 12.5 (11.14)

is consistent with an octet assignment of the f0(1300). For
a pure octet this ratio should be around 6 and a relatively
17 The mass of the f0(1300) is not determined very precisely.
It could easily be around 1400 MeV
18 In Figs. 5 and 6 we have not distinguished between Mao

and M̂ao . Taking into account the additional mixing with two–
kaon states for the a0 the relevant axis actually shows M̂ao

small admixture of a singlet state could easily explain a
further enhancement. (Whereas a pure singlet state would
lead to a much smaller ratio R ' 1.5 a second solution for
large R corresponds to a large octet–singlet mixing angle,
i.e. tanϑs ' −0.9 for equal sm2 and hm2 couplings.) On
the other hand, the branching ratios of the higher mass
resonance f0(1590) seem compatible with a singlet with
large cubic coupling ∼ p2s, but not with an octet. For the
f0(980) an assignment is difficult in view of the presum-
ably large mixing with two–kaon states.

In summary, two natural scenarios for the scalar nonet
seem to be compatible with the parameters of the linear
meson model extracted from the pseudoscalar sector: For
one scenario the isotriplet corresponds to the a0(980) and
the singlet (or dominant ss state in case of large |ϑs|) is
associated with the f0(980). These four states are largely
influenced by mixing with two–kaon states. The other f0
state of the nonet (dominantly an octet state in case of
small |ϑs|) corresponds to the f0(1300). In this case a
relatively large mixing in the strange sector with ∂µρ

µ
V

(large ζhv2) explains why the K∗
0 (1430) has the highest

mass in the nonet. The other scenario has a larger aver-
age mass mh of the octet. The triplet is associated with
the proposed a0(1320) which is not far below the dou-
blets K∗

0 (1430). The a0(980) and f0(980) are dominantly
four–quark states or KK molecules in this case. Again,
the octet state is the f0(1300). The singlet corresponds19
either to f0(1590) or its width is too large to be detected.
Reliable information about the value of λ1 would certainly
be of great interest for further pinning down the possible
options.

19 There are other not so well established resonances f0(1510)
and f0(1525) [19] which may be identical with the f0(1590) or
also be possible candidates for the singlet
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Fig. 7. One-loop diagram for the dominant contribution to
Σi(q2)

12 Higher derivative contributions

In this section we investigate deviations of the meson prop-
agator from the approximated form Gi = (Ziq

2 +M
2
i )

−1.
We will first concentrate on the flavored pseudoscalars. In
the language of Sect. 6 we want to make an estimate of the
corrections ∆Zi (6.13). Within a systematic quark mass
expansion we need to order ∆2 only the q4 correction to
the inverse propagator in an approximation where it is
independent of the quark masses. This correction arises
from a term involving four derivatives

Lkin(4) =
Hm

4
Tr
(
∂2m∂2m− q20∂

µm∂µm
)

(12.1)

where q20 is chosen according to (6.19). It involves one
additional parameter Hm which determines the ratio

ωm

ωm
= 1 + δω = 1 − 2

3
Hm

M2
K −M2

π

ωmv
. (12.2)

As a first observation we notice that Hm receives con-
tributions from the mixing of the pseudoscalar mesons
with other states. We infer from Appendix C that the mix-
ing with other 0−+ octets indeed induces higher derivative
corrections because of the momentum dependence of the
propagators of the additional states that are integrated
out. If we assume that the dominant contribution to ωm

arises through mixing with other states we can identify in
(C.7) ωm with ω(ρ)

m and find

δ(ρ)
ω =

1
6

(M2
K −M2

π)
(M2

P −m2
m)

[2fK + fπ]
[fK − fπ]

' 0.07(0.05) (12.3)

where we used MP = 2280 MeV(2670 MeV) (cf. Ap-
pendix C and Table 9 in Appendix B). One may also
estimate K8 according to (6.19) and finds

K
(ρ)
8 ' 0.002(0.001) . (12.4)

This is indeed negligible for the wave function renormal-
izations as compared to ωmv.

A different contribution to the higher derivative term
(12.1) arises from loops of meson fluctuations. For an es-
timate of their importance we use the modified loop ex-
pansion of [16] (“systematically resummed perturbation
theory”). This allows to compute the deviations of the in-
verse propagator from the form q2 +M2

i in terms of M2
i

and effective 1PI cubic vertices. It is crucial in our con-
text that instead of “classical vertices” only the 1PI Green

functions appear in the perturbative series since only the
latter are directly calculable from the present phenomeno-
logical analysis. Also the loop expansion is only used for
“higher order couplings” where it converges reasonably
well. (We do not expect a good convergence for quantities
like Zh/Zm etc.) Let us write the inverse propagator for a
member of the pseudoscalar octet as

G−1
i (q2) = q2 +M2

i + Σ̃i(q2) . (12.5)

Here we have subtracted from the usual self energy Σi(q2)
those parts which are already contained in the effective
wave function renormalizations Zi and mass terms M

2
i

Σ̃i(q2) = Σi(q2) −Σi(0) − q2

q20

(
Σi(q20) −Σi(0)

)
. (12.6)

This definition implies

Σ̃i(0) = Σ̃i(q20) = 0 (12.7)

and we use q20 = −m2
m. In consequence, Σ̃i(q2) contains

only contributions to higher derivative terms. The domi-
nant one–loop contribution toΣm(q2) for the pseudoscalar
octet is depicted in Fig. 7. It involves the propagation of
a scalar and a pseudoscalar in the loop and we therefore
need the cubic coupling γ2 (cf. Sect. 2). We observe that
the subtraction (12.6) makes the usual one–loop expres-
sion ultraviolet finite. In fact, if the momentum depen-
dence of the effective three–point vertex is not too strong
the momentum integral for the difference Σm(q2)−Σm(0)
is dominated by momenta in the range between the masses
of the two particles propagating in the loop. We will use
here the approximation of a constant cubic vertex which
we approximate by its value to lowest order in the quark
mass expansion given by γ2. We also neglect the octet
mass splitting for the particles propagating in the loop
for which we use average masses mm = 412 MeV and
mh = 1394 MeV. To lowest order in the quark mass ex-
pansion we are interested in the effective coupling Hm

(6.12) which is given by

Hm =
∂

∂q2

(
Σ̃m

q2

)
q2=q2

0

. (12.8)

We are interested in the momentum range −q2 < (mh −
mm)2 for which the one–loop contribution is given by

Σ(1)
m (q2) −Σ(1)

m (0)

' 5γ2
2

48π2

{
1 −

[
m2

m −m2
h

q2
+
m2

m +m2
h

m2
m −m2

h

]
ln
mh

mm

− 1
q2

√
(mm +mh)2 + q2

√
(mm −mh)2 + q2

× ln

√
(mm +mh)2 + q2 +

√
(mm −mh)2 + q2√

(mm +mh)2 + q2 −√(mm −mh)2 + q2

}
.

(12.9)

Here we have neglected contributions ∼ γ2
1 , γ

2
3 as well as

the η–η′ mixing. For q20 = −m2
m this yields the one–loop

contribution to Hm
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Table 1. This table shows the phenomenological input used
in this work. All values are given in MeV. The charged meson
masses are electromagnetically corrected

Mπ± MK± MK0 Mη′ fπ fK±

135.1 492.4 497.7 957.8 92.4 113.0

H
(1)
m ' − 5

48π2

γ2
2

m4
m

×
{

2 − 2m4
h − 5m2

hm
2
m +m4

m

m2
m(m2

h −m2
m)

ln
mh

mm
(12.10)

+mh

√
m2

h − 4m2
m

(
2
m2

m

+
1

m2
h − 4m2

m

)

× ln
√
mh + 2mm +

√
mh − 2mm√

mh + 2mm − √
mh − 2mm

}
.

Using γ2 ' 8000 MeV and ωmv ' −0.20 (see Sect. 13)
this results in

H
(1)
m ' 1.64 · 10−8 MeV−2 (12.11)

or
δ(1)ω ' 0.012 . (12.12)

We see that loop corrections to the higher derivative terms
are negligible as compared to contributions arising through
the mixing with other states. We will therefore assume
that the higher derivative terms are dominated by such
mixings and estimate

ωm

ωm
=

1

1 + δ
(ρ)
ω

' 0.95 . (12.13)

Even though (ωm − ωm)/ωm is formally not suppressed
by powers of ∆ we see that this higher derivative effect is
actually small.

In the η–η′ sector we need information about the mo-
mentum dependence of z8(q2), zp(q2) and ω̂(q2) (6.26).
The relevant quantities are d8 = z8(−M2

η′) − 1, dp =
zp(−M2

η′)−1 and dω = (ω̂(−M2
η′)−ω̂)/ω̂ where we remind

the reader of the definitions z8(−M2
η ) = zp(−M2

η ) = 1 and
ω̂(−M2

η ) = ω̂. Since the mass difference M2
η′ −M2

η exceeds
substantially M2

K −M2
π the higher derivative corrections

in the η–η′ sector could be somewhat larger than for the
flavored mesons. Altogether, the contributions beyond the
lowest order in the derivative expansion involve four addi-
tional dimensionless parameters, δω, d8, dp and dω. Their
absolute size is expected to be small if the derivative ex-
pansion converges. Since the predictions of the lowest or-
der in the derivative expansion come already very close to
the experimental values of fη and fη′ it seems not difficult
to achieve agreement with observation by using small but
otherwise arbitrary values for these four parameters. The
expansion in powers of σ0 may lead to some approximate
relations between δω, d8, dp and dω but we will not pursue
this issue here further.

Table 2. The table shows the four different combinations of
the parameters ωmv, Zp/Zm and ωm/ωm used in Sect. 13. Line
(d) corresponds to the leading mixing approximation for which
ωmv and ωm/ωm are computed and do therefore not play the
role of free input parameters

ωmv Zp/Zm ωm/ωm ωmv
(a) −0.22 1.0 1.0 −0.22
(b) −0.20 0.9 1.0 −0.20
(c) −0.22 0.9 0.9 −0.24
(d) −0.17 0.9 0.95 −0.18

Table 3. Values for wave function renormalizations Zi and
zero momentum mass parameters M i

Zπ ZK± ZK± − ZK0
M

π±
MeV

M
K±

MeV
M

K0
MeV

(a) 1.22 0.89 0.0063 149.2 465.3 468.7
(b) 1.20 0.90 0.0058 148.0 467.9 471.4
(c) 1.24 0.88 0.0068 150.7 462.2 465.4
(d) 1.18 0.91 0.0052 146.5 470.9 474.6

Table 4. Expectation values of scalar singlet and octets

fπ
MeV

f
K±
MeV

σ0
MeV

(
Zm
Zh

)1/2
v

MeV

(
Zm
Zh

)1/2
w

MeV

(a) 83.7 119.6 53.9 24.2 −0.69
(b) 84.3 118.9 53.8 23.3 −0.67
(c) 82.8 120.4 54.1 25.3 −0.71
(d) 85.2 118.2 53.7 22.2 −0.66

Instead, we conclude this section by a description of
the predictions of the “leading mixing approximation”.
For this purpose we assume that all corrections to the
kinetic terms — both, quark mass and higher derivative
corrections — are due to a mixing with higher states con-
tained in the divergence of the axialvector field ∂µρ

µ
A. The

formalism is described in appendices B and C. All param-
eters appearing in the kinetic terms can be computed in
terms of masses and couplings of the vector– and axialvec-
tor fields. Most of these couplings can be determined from
observation (cf. Appendix B). There remains essentially
only one important free parameter ZP which appears in
the term (1/4) Tr

{
Z̃P (∂µρ

µ
V )2 + ZP (∂µρ

µ
A)2
}

. This pa-
rameter determines the strength of the higher derivative
terms induced by the mixing with M2

P ∼ Z−1
P in (12.3).

In Fig. 8a we plot the values of Mη/M
exp
η , fη/f

exp
η and

fη′/f exp
η′ as functions of ZP . (The higher derivative cor-

rections vanish for ZP = 0.) For this plot we use xρ =
1 (cf. Appendix B) and employ the leading mixing ap-
proximation which assumes ωm = ω

(ρ)
m and ωm/ωm given

by (12.3), (12.12). The higher derivative contributions in
(6.26) and (A.26) are now included according to (C.9),
(C.13) and (C.14). We see that a reasonable picture emer-
ges for ZP ' 0.22. It is consistent with the assumption
that the nonminimal kinetic terms for the pseudoscalars
are dominated by the mixing with ∂µρ

µ
A or the “partial

Higgs effect”. The remaining differences of the curves from
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Fig. 8. The plots show the curves for Mη/Mexp
η (solid line), fη/fexp

η (dotted line) and fη′/fexp
η′ (dashed line) in the “leading

mixing approximation” as functions of ZP for xρ = 1, Zp/Zm = 1 a and Zp/Zm = 0.9 b

one can reasonably be attributed to subleading effects
beyond the leading mixing approximation, as described
in the more general framework of the main text. For a
demonstration we also show in Fig. 8b the situation which
arises if in addition to the contributions from the leading
mixing approximation one also includes a nonvanishing
Uϕ in the kinetic terms (4.6). For this plot we have cho-
sen Uϕ such that Zp/Zm = 0.9 (cf. (8.10). The agreement
with observation improves and the optimal value of ZP

is shifted to somewhat smaller values. We emphasize that
the leading mixing approximation is complementary to the
formal expansion in powers of quark masses. It is encour-
aging that a simple mechanism (the partial Higgs effect)
can apparently explain the dominant parts of the param-
eters appearing in the systematic quark mass expansion.

13 Results

For the convenience of the reader we summarize in this sec-
tion the results of a numerical solution of our equations.
We observe that the pseudoscalar sector can be treated in-
dependently from the scalar sector. For the flavored pseu-
doscalars there are two small parameters whose influence
is rather modest, namely Zp/Zm −1 and δω = ωm/ωm −1.
Three additional small parameters dω, d8, dp character-
ize the most general form of the higher derivative terms
in the η–η′ sector. For the first two lines (a) and (b) in
our tables we use the first order in the derivative expan-
sion, i.e. δω = dω = d8 = dp = 0. We present two values
Zp/Zm = 1.0 and 0.9. The value of the dominant free
parameter ωmv is chosen such that Mη comes out close
to its experimental value (cf. Fig. 1). Going beyond the
first order in the derivative expansion we include in line
(c) the higher derivative corrections corresponding to a
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Table 5. Parameters of the linear meson model
m2

g

MeV2
ν

MeV λ2 ω̂
(

Zh
Zm

)1/2 γ2
MeV

γ2v
MeV2

γ2w
MeV2

γ3v
MeV2

(a) (390.9)2 6814 17.0 0.35 4780 (340.1)2 −(57.4)2 −(80.9)2

(b) (392.9)2 6447 21.3 0.30 4942 (339.3)2 −(57.7)2 (46.1)2

(c) (388.6)2 5964 17.5 0.33 4405 (333.8)2 −(55.7)2 −(38.6)2

(d) (395.2)2 6011 26.8 0.25 5167 (338.8)2 −(58.2)2 (112.3)2

Table 6. “Predictions” for Mη, fη and fη′

Mη

MeV
fη

MeV
fη′
MeV

fη

fπ

fη′
fπ

fη

f
exp
η

fη′
f
exp
η′

(a) 550.8 106.6 93.5 1.15 1.01 1.09 1.25
(b) 546.9 113.4 83.8 1.23 0.91 1.16 1.12
(c) 549.1 103.5 88.8 1.12 0.96 1.06 1.19
(d) 536.6 111.3 82.9 1.20 0.90 1.14 1.11

nonvanishing δω. It is taken according to the leading mix-
ing estimate (12.13) such that ωm/ωm = 0.9. Finally, we
present the results of the leading mixing approximation in
line (d). Here all quark mass corrections to the kinetic and
all higher derivative terms are determined from the simple
assumption that they are induced by the exchange of the
axialvector field ∂µρ

µ
A. Line (d) corresponds to Fig. 8b

with ZP ' 0.16. In the leading mixing approximation
ωmv and ωm/ωm are not anymore free parameters and
can therefore not be adapted to fix Mη to its experimen-
tal value. For line (d) the values of Mη, fη and fη′ dif-
fer somewhat from those obtained for the optimal value
ωmv = −0.20. The leading mixing approximation comes
nevertheless quite close to the experimental results. In Ta-
ble 1 we give our input values for the pseudoscalar sector.
Table 2 shows the four different combinations of the pa-
rameters ωmv, Zp/Zm and ωm/ωm used for our numerical
analysis. The numbers given in the text of this paper cor-
respond to line (b) which may be considered as our best
values to first order in the derivative expansion.

The first step is to solve (6.16) for the Z–factors and
to extract the values of the zero momentum parameters
M

2
i , f i. The corresponding relations are (2.6), (5.6), (6.3),

(6.10) and the results are found in Tables 3 and 4. We
should point out the sizeable differences between M2

i and
M

2
i and similarly for the decay constants. They are due

to the large value of |ωmv|. In particular, the difference
fK − fπ is almost twice the value of fK − fπ! In the next
step we determine in Table 5 the parameters of the lin-
ear meson model from (5.2)–(5.4), (5.6), (8.12) and (2.10),
(4.29). We observe that the infered value of the cubic cou-
pling ν depends only moderately on the details of the ef-
fective meson model. In contrast, the uncertainty for the
quartic coupling λ2 remains substantial. Table 5 also con-
tains information about the cubic coupling γ2 between
two pseudoscalar octets and the scalar octet as well as
for the coupling γ3 between the pseudoscalar octet, the
pseudoscalar singlet and the scalar octet. Even though
the sign of γ3 remains undetermined we find |γ3/γ2| <∼ 0.1.

The coupling γ2 therefore dominates the decay of the 0++

mesons.
We are now ready to compute the mass matrix ele-

ments of the η–η′ sector using (5.4). The eigenvalues Mη,
Mη′ follow from (6.29) the mixing angles from (6.27) and
the relations for fη and fη′ are given by (A.23) and (9.9).
These are our main “predictions” for observable quanti-
ties. They are displayed in Table 6. We find a very satis-
factory agreement with experiment for line (b). The un-
certainty in the “prediction” for fη and fη′ is reflected
in the differences as compared to lines (a) and (c). Also
the leading mixing approximation (d) is not too far from
experiment, even though contributions beyond this ap-
proximation need to be included. The general tendency
of the higher derivative contributions in the η–η′ sector
is an enhancement of fη′ and a decrease in Mη and fη

(cf. Fig. 8). From Table 7 we note that the octet decay
constant fη8 is rather close to fK whereas the correspond-
ing singlet decay constant almost equals fπ. In Table 7 we
also show the mixing angles in the η–η′ sector. We find
a large mixing between η and η′ with an important de-
pendence on the momentum. The mixing for q2 = −M2

η′

is substantially larger than that for q2 = −M2
η . The mix-

ing corresponding to θp(η) ' −13.7o is somewhat smaller
than earlier estimates from chiral perturbation theory [2]
where the size of the mixing angle was extracted indirectly
from the requirement of a realistic value for Mη. On the
other hand, the mixing corresponding to θp(η′) is larger.
We should point out that our direct method of computing
all elements of the matrix for the inverse propagator in the
η–η′ system is quite different from the indirect consistency
requirement for Mη. We furthermore see in Table 7 a large
deviation of m2

p/M
2
η′ from one despite the fact that this

difference is formally only a quadratic term in the quark
mass expansion. We also present in Table 7 the isospin
violation in the decay constants (6.24), fK0 − fK± . It is
reduced significantly as compared to the value obtained
to lowest order in the quark mass expansion (2.12) or in
chiral perturbation theory [2].

Our results in the scalar sector depend in addition on
Zh/Zm, λ3σ

2
0 , ωhv and ζhv2. We use λ3σ

2
0 , ωhv and ζhv2

as input parameters together with a fixed value MK∗
0

=
1430 MeV. From (4.33), (4.34) we determine m2

h and γ6v
as functions of these three couplings. Here we use our “op-
timal values” for λ2, ν, etc. corresponding to the second
line (b) in Tables 2–7. We determine Zh/Zm as a function
of λ3, ωhv and ζhv2 according to
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Table 7. Mixing angles in the η–η′ system and isospin violation in
the decay constants

fη8
MeV

fη′8
MeV

fη0
MeV

fη′0
MeV θp(η) θp(η′) mp

MeV
m2

p

M2
η′

f
K0−f

K±
MeV

(a) 116.6 132.1 95.3 107.9 −15.6 −31.2 839.1 0.77 0.25
(b) 117.1 124.2 96.3 102.1 −13.7 −28.0 865.9 0.82 0.28
(c) 116.0 126.6 94.0 102.6 −16.3 −31.1 839.8 0.77 0.22
(d) 117.7 120.4 97.5 99.8 −14.7 −28.6 843.5 0.78 0.30

Table 8. Masses and parameters of the scalar octet

ωhv ζhv2 λ3σ
2
0

M̂Ko∗
MeV

Zh
Zm

mh
MeV

γ6v
MeV2

γ2
MeV

Mao
MeV

Mf8
MeV

0.0 0.00 0.0 1430 0.35 1407 (254.7)2 8394 1360 1453
−0.2 0.00 0.0 1430 0.39 1335 (241.6)2 7963 1178 1541
0.0 0.00 9.4 1430 0.35 1378 (382.6)2 7973 1267 1480
−0.2 0.00 9.4 1430 0.39 1307 (363.0)2 7564 1097 1570
0.0 0.02 0.0 1295 0.42 1274 (230.6)2 7601 1232 1315
0.0 0.04 0.0 1144 0.54 1126 (203.7)2 6715 1088 1162

Zh

Zm
= (13.1)

m2
g + σ0(3σ0λ2 + ν) + 1

6 (9σ0λ2 − ν + 12σ3
0λ3)[fK − fπ][

1 + 1
2ωhv

]
M̂2

K∗
o

.

The results of this analysis and, in particular, the masses
of the lowest lying 0++ octet are given for several values of
λ3, ωhv and ζhv2 in Table 8. Here λ3σ

2
0 = 9.4 corresponds

to the “maximal value” λ2/2 compatible with a conver-
gent expansion in σ0 (cf. Sect. 10). From an estimate of
ζhv

2 due to the exchange of the vector field ∂µρ
µ
V (see

Appendix B) we learn that the two last lines in Table 8
are preferred. Additional large mixing effects (see Sect. 11
and Appendix C) may further lower Mao and lead to a
mass of the isotriplet a0 consistent with the observed res-
onance a0(980). The scalar partner of the η appears to be
associated with the broad resonance f0(1300). We finally
emphasize the large deviation of Zh/Zm from one which
underlines the importance of nonminimal kinetic terms in
the linear meson model.

14 Conclusions

In this paper we have investigated the effective action for
the linear meson model. Including the discussion of the
vector and axialvector fields from Appendix B a fairly sim-
ple picture emerges. Expressed in terms of scalar fields
Φ and vector fields ρµ

V , ρµ
A the quark mass expansion

seems to converge rather well for the three light flavors.
The same holds for the derivative expansion, leading to
an approximate momentum dependence of propagators
∼ (Zq2 + M

2
)−1. The only exception from this picture

seems to be the scalar isotriplet a0(980) which can be ex-
plained (see Appendix C) by a large contribution of two–
kaon or four–quark states.

The divergence ∂µρ
µ
A has the same quantum numbers

as the pseudoscalar octet plus singlet. We have estimated
the resulting mixing effect or, equivalently, the terms in-
duced in the effective action for Φ from integrating out
∂µρ

µ
A (“partial Higgs effect”). We find a large non–minimal

kinetic term which induces substantial quark mass correc-
tions to the kinetic terms for the pseudoscalars (ω(ρ)

m v '
−0.15). This effect remains compatible with a converging
quark mass expansion for the flavored pseudoscalars π and
K. On the other hand, an investigation of the masses Mη

and Mη′ as well as the decay constants fη and fη′ shows
that the non–minimal kinetic term induces in turn a large
momentum dependent mixing in the η–η′ sector. Here we
find that contributions which are of third or higher or-
der in a formal quark mass expansion are comparable in
size to the contributions arising to second order. It is the
nonlinearity generated by this large mixing which leads
to “predictions” for Mη, fη and fη′ which are compati-
ble with experimental observations. This explains why the
measured value of fη is quite far away from its value for
zero quark masses20. It is amazing to see that the nonlin-
earities in Mη, fη and fη′ as functions of the variable ωmv
all conspire such that a common value of ωmv can explain
simultaneously these three quantities. Even more, our phe-
nomenological estimate ωmv ' −0.2 is quite close to the
estimate from the partial Higgs effect, ω(ρ)

m v ' −0.15. The
latter involves completely different quantities like the ρππ
coupling and the masses of the axialvectors!

It will be very interesting to see if our “phenomeno-
logical” picture of the effective linear meson model can be
obtained from the solution of a flow equation similar to
[6]. It would be highly nontrivial if the couplings would
come out in such an approach in a range consistent with
the analysis of the present paper. This concerns, in par-
ticular, the quartic coupling λ2 which was found in [6] to
be essentially determined by an infrared fixed point be-
havior. Furthermore, a more systematic analysis of the
(axial)vector meson sector including quark mass effects
should lead to a quantitative estimate of several effective
cubic and quartic vertices relevant for the decay proper-
ties of these mesons. Beyond a successful explanation of
the observed values for fη and fη′ our results constitute
the “phenomenological basis” for interesting further devel-

20 We emphasize once again that the nonlinearities in ∆ or
the poor convergence of an expansion in ∆ appear only in the
eigenvalues Mη and Mη′ , the mixing angles θp(η), θp(η′) and
the decay constants fη, fη′ . The matrix elements of the η–η′

propagator converge satisfactorily
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opments. They also shed light on the important question
of the convergence of the quark mass expansion.

Appendices

A Meson decay constants

In this appendix we discuss the meson decay constants
within the linear sigma model. Most results displayed here
are well known from current algebra and are simply re-
phrased in a somewhat different language. The only slight-
ly delicate issue concerns the choice of the normalization of
fields. This determines the appropriate definition of wave
function renormalization constants. A careful treatment
of these constants is relevant for quantitative relations be-
tween decay constants and meson masses as discussed in
the main text. We adopt here definitions of fπ, fK , fη,
etc. which are directly related to measured partial decay
widths of the corresponding mesons.

The weak leptonic decay of the charged pion, π− −→
µ− + νµ, involves the effective three point vertex (γ being
the Euclidean analog of γ5)

Γπµν = i

∫
d4pπ

(2π)4
d4pµ

(2π)4
d4pν

(2π)4

×
[
g2 cosϑc

4
√

2M2
W

F ρ
π (pπ, pµ,−pν)

×π−(pπ)µ(pµ)γρ(1 + γ)νµ(−pν)(2π)4

×δ(pπ − pµ − pν) + h.c.

]
. (A.1)

Here we have projected onto the leptonic V − A struc-
ture following from virtual W–exchange with MW the
W–boson mass, g the weak gauge coupling and ϑc the
Cabibbo angle. (Analogously, the effective vertex for the
charged kaon decay is obtained from (A.1) by the replace-
ments F ρ

π → F ρ
K , π− → K− and cosϑc → sinϑc.) The

vertex function F ρ
π can depend only on two independent

momenta (e.g., pπ and pν) and the leptonic pion decay
involves its value for on–shell momenta, p2

π = −M2
π± ,

p2
µ = −M2

µ, p2
ν = 0. In the present context we neglect

the dependence of F ρ
π on the leptonic momenta and use

the parameterization21

F ρ
π = pρ

πFπ(p2
π) . (A.2)

Our task is therefore the evaluation of the pion decay con-
stant

fπ = Fπ(p2
π = −M2

π±) (A.3)

which is determined experimentally from the leptonic de-
cay width of the pion (up to electromagnetic corrections)

Γπ→µν =
G2

F

4π
m2

µMπ±f2
π

(
1 − m2

µ

M2
π±

)2

cos2 ϑc (A.4)

21 A term ∼ pρ
ν

would not contribute to the pion decay any-
how, since on shell we have p/ νν(−pν) = 0

derived from (A.1) with GF =
√

2g2/(8M2
W ).

In order to compute Fπ we consider the linear σ–model
coupled to external currents. For this purpose we replace
all derivatives acting on Φ by covariant ones

DµΦ = ∂µΦ− i

2
λzR

µ
zΦ+

i

2
ΦλzL

µ
z

= ∂µΦ− i

2
V µ

z [λz, Φ] − i

2
Aµ

z {λz, Φ} . (A.5)

Here the vector– and axialvector currents V µ
z and Aµ

z are
related to the left and right handed currents Lµ

z and Rµ
z ,

respectively, by
Lµ

z = V µ
z −Aµ

z

Rµ
z = V µ

z +Aµ
z .

(A.6)

By this replacement Γkin =
∫
d4xLkin (4.6) becomes a

functional of the (local) background fields V µ and Aµ.
Current conservation is automatically embodied in this
construction. The coupling of mesons to W–bosons can
be infered via the identification

Lµ
1,2 = g cosϑcW

µ
1,2

Lµ
4,5 = g sinϑcW

µ
1,2 .

(A.7)

Once the couplings of mesons to W–bosons are known the
couplings to lepton pairs follow by insertion of the field
equation

Wµ
i (p) = −g

4
1

p2 +M2
W

×
∫

d4q

(2π)4
ψ(q − p)τiγµ(1 + γ)ψ(q) . (A.8)

Here ψ stands for the lepton doublets and we will neglect
p2 as compared to M2

W . Extracting the coefficient linear
in Lµ

1,2

ΓL = −
∫

d4p

(2π)4
Kµ

L,z(p)Lz,µ(p)

= − i

2
√

2

∫
d4p

(2π)4
π−(p)Fµ

π (p)

× [L1,µ(p) − iL2,µ(p)] + . . . (A.9)

we can relate Fπ to the part of Kµ
L,1 which is linear in π1

Kµ
L,1(p) =

i

2
pµFπ(p)π1(p) + . . . . (A.10)

The discussion of leptonic decays of charged kaons is anal-
ogous with

Kµ
L,4(p) =

i

2
pµFK(p)K4(p) + . . . . (A.11)

Here π1,2 and K4,5 are the pion and kaon fields, π− =
1√
2
(π1 + iπ2), K− = 1√

2
(K4 + iK5), with standard nor-

malization of their kinetic terms such that their inverse
propagator (two point function) in the vicinity of its zero
at timelike momenta is given by p2 +M2

π±(M2
K±).
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For an evaluation of the terms linear in the currents
V µ

z , Aµ
z and linear in the meson fields one covariant deriva-

tive should be replaced by

DµΦ −→ − i

2
V µ

z [λz, 〈Φ〉] − i

2
Aµ

z {λz, 〈Φ〉)} (A.12)

with 〈Φ〉 = diag(ϕu, ϕd, ϕs) the expectation value of Φ. All
other covariant derivatives have to act as simple deriva-
tives on the meson fields. Consider first the limit of van-
ishing quark masses where ϕu = ϕd = ϕs = σ0. The
term linear in the vector current V µ

z vanishes whereas
the axial current couples linearly to the pion field as a
consequence of spontaneous chiral symmetry breaking, i.e.
DµΦ → −iσ0A

µ
zλz. The relevant term in Lkin (4.6) reads

Lkin −→ −1
2
(
Zϕ +X−

ϕ σ
2
0 + Uϕσ0

)
×Z−1

m σ0A
µ
z Tr {λz, ∂µm} (A.13)

and, with Zm = Zϕ+X−
ϕ σ

2
0+Uϕσ0 (cf. Sect. 8), one infers

Kµ
L,z = −1

4
σ0 Tr {λz, ∂µm} . (A.14)

In the limit of vanishing quark masses the fields mz are
already properly normalized and we can identify π1 = m1,
K1 = m4. This yields

fπ = 2σ0 . (A.15)

The proportionality between fπ and σ0 is no surprise. It
is well known that in the limit of vanishing quark masses
the pion decay is related to the non–conservation of the
axial current induced by chiral symmetry breaking.

Going beyond the limit of vanishing quark masses the
expectation values of ϕu, ϕd and ϕs are different. Nev-
ertheless, there is no term linear both in the vector cur-
rent V µ

z and a pseudoscalar meson. This follows from the
discrete symmetries C, P and is related to the observa-
tion that the first term on the right hand side of (A.12)
is hermitean whereas the second is anti–hermitean. On
the other hand, the vector current couples linearly to the
scalars as, for example (see (4.4), (4.11))

Tr (DµΦ)†
DµΦ (A.16)

−→ −1
2
Aµ

z Tr
[
{λz, 〈Φ〉}

(
Z

− 1
2

m ∂µm+
2√
6
Z

− 1
2

p ∂µp

)]

− i

2
V µ

z Tr
[
[λz, 〈Φ〉]

(
Z

− 1
2

h ∂µh+
2√
6
Z

− 1
2

s ∂µs

)]
.

For our computation of fπ we can omit the term linear in
V µ

z .
Let us consider first the approximation where the ki-

netic term (4.6) is truncated to Zϕ Tr (DµΦ)† (DµΦ). In
this limit m describes already the properly normalized
pion and kaon fields. One finds

Kµ
L,1 =

i

2
pµπ1(p)ZϕZ

− 1
2

m (ϕu + ϕd) (A.17)

or
fπ = ZϕZ

− 1
2

m (ϕu + ϕd) . (A.18)

Similarly, we find for the leptonic decay of the charged
kaons

fK± = ZϕZ
− 1

2
m (ϕu + ϕs) (A.19)

and define
fK0 = ZϕZ

− 1
2

m (ϕd + ϕs) . (A.20)

Noting σ0 = 1
3 (ϕu + ϕd + ϕs) and observing that in this

approximation Zm = Zϕ one arrives at (5.6)

fπ + fK± + fK0 = 6σ0Z
1
2
m = 6σ0 . (A.21)

With the definitions ∆u = Z
1
2
mϕu − σ0 etc. and 〈h〉 =√

2Z
1
2
h 〈Φs〉 = 2Z

1
2
h (〈Φ〉 − σ0) = 2 (Zh/Zm)

1
2 diag(∆u, ∆d,

∆s) we obtain the relations (2.6).
Next we consider the more general kinetic term (4.6).

The first effect is a nontrivial wave function renormaliza-
tion between the fields m1 and π1, i.e.

m1 = Z
− 1

2
π π1 , m4 = Z

− 1
2

K±K4 . (A.22)

This effect multiplies fπ by a factor Z− 1
2

π and similarly for
fK± , fK0 . Here we note that Zπ, ZK± and ZK0 should be
defined at the corresponding poles such that the inverse
renormalized two–point function is approximated in the
vicinity of the pole by q2 +M2

π± with Mπ± ' 135.1 MeV
the physical pion mass (after subtraction of electromag-
netic effects). The second effect reflects the modification
of the general kinetic term into which (A.5) is inserted.
Since the axialvector field Aµ(q) is needed for on–shell
momenta, we conclude that all kinetic terms must be eval-
uated at the poles. Expanding the inverse propagators
around q2 = −M2, knowledge of the coefficient linear
in q2 suffices for a computation of the meson decay con-
stants. For the pions this is given by Zπ and the evaluation
of the full kinetic term gives a factor Zπ in the formula
for fπ. This can be seen directly by inserting (A.5) into
the contributions ∼ X−

ϕ , Uϕ (8.6), (8.9) and using the
relations (8.10). In summary, the total effect of the gen-
eralized kinetic term is a multiplication of fπ with Z

1/2
π .

Similarly, fK± and fK0 are proportional to Z1/2
K± and Z1/2

K0 ,
respectively. This explains the relations (6.9). We empha-
size that Zπ, ZK± and ZK0 should be evaluated from the
coefficient linear in q2 in an expansion of the inverse prop-
agator around q2 = −M2

π± ,−M2
K± ,−M2

K0 , respectively.
More precisely, they are defined by (6.11) with q20 replaced
by −M2

i .
We finally extend the discussion to the decay con-

stants of the non–flavored pseudoscalars fπ0 , fη and fη′ .
By (9.9) and (9.10) they are related to the couplings
of these mesons to the corresponding components of the
axialvector currents, or in a different language, the ex-
pectation value of the corresponding current between the
vacuum and the meson state. For instance, fη8 parame-
terizes the coupling of η to the current A8 whereas fη′0
corresponds to the coupling of the η′ to the singlet current.
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For a comparison of fη8 with fπ we therefore have to re-
place Tr ({λ1, 〈Φ〉}λ1)Z

1/2
π by Tr ({λ8, 〈Φ〉}λ8)Z

1/2
8 . The

ratios of fπ0 , fη8 and fη′0 to fπ are then easily computed

fπ0

fπ
=
(
Zπ0

Zπ

) 1
2

(A.23)

fη8

fπ
=
(
Z8

Zπ

) 1
2 ϕu + ϕd + 4ϕs

3(ϕu + ϕd)

=
(
Z8

Zπ

) 1
2 2fK± + 2fK0 − fπ

3fπ

(A.24)

fη0

fπ
=
(
Z8

Zπ

) 1
2 2(ϕu + ϕd + ϕs)

3(ϕu + ϕd)

=
(
Z8

Zπ

) 1
2 fK± + fK0 + fπ

3fπ

. (A.25)

Similarly, the octet and singlet decay constants for the
normalization of the η′, fη′8 and fη′0, are given by

fη′8

fη8
=
fη′0

fη0
=
(

Zp

ZmZ8

) 1
2

z̃p(−M2
η′)1/2 . (A.26)

Here z̃p(−M2
η′) accounts for higher derivative effects and

is normalized for q2 = −M2
η according to z̃p(−M2

η ) = 1.
If the higher derivative effects are omitted one also has
z̃p(−M2

η′) = 1. Furthermore, if we neglect the mixing ef-
fects (or for z8(q2) = zp(q2)) we can identify z̃p(q2) with
zp(q2) appearing in (6.26). We note that (A.26) is appro-
priate for a definition of Zp at q20 = −M2

η . If one instead
would define Zp at q20 = −M2

η′ the factor zp(−M2
η′)1/2

would be absorbed by this alternative definition.

B Vector mesons

In this section we briefly discuss22 the vector and pseu-
dovector fields and their interactions with scalars and pseu-
doscalars. This will permit us to estimate the part of the
effective interactions involving four (pseudo)scalars which
is induced by the exchange of vector fields. We introduce
the fields ρµ

L and ρµ
R as hermitian 3 × 3 matrices which

transform as 8 ⊕ 1 under SUL(3) and SUR(3), respec-
tively, being neutral with respect to the other part of the
flavor group. The interaction with (constituent) quarks

Lρqq =
1√
2
Zqgρqq (qLγµρ

µ
LqL + qRγµρ

µ
RqR) (B.1)

respects SUL(3)×SUR(3) and is also consistent with left–
right symmetry (ρL ↔ ρR) and charge conjugation (ρL →
−ρT

R, ρR → −ρT
L). The invariant kinetic and mass terms

read

Lρ,2 =
Zρ

8
Tr (∂µρLν − ∂νρLµ) (∂µρν

L − ∂νρµ
L)

22 See also [21] and references therein

+
Zρ

4αρ
Tr (∂µρ̃

µ
L)2 +

Zρ

12α′
ρ

(∂µ Tr ρµ
L)2

+
1
4
m2

ρ Tr ρ̃Lµρ̃
µ
L +

1
12
m′2

ρ Tr ρµ
L Tr ρLµ

+ (L → R) (B.2)

where
ρ̃µ

L,R = ρµ
L,R − 1

3
Tr ρµ

L,R ≡ ρ̃z,µ
L,Rλz (B.3)

denotes the octets and 1√
6

Tr ρµ
L,R represents the singlets.

In general, the field ρµ can describe spin–one and spin–
zero (∼ ∂µρ

µ) particles. For αρ, α
′
ρ → 0 the spin–zero com-

ponents decouple and the fields ρµ only describes spin–one
bosons. (∂µρ

µ = 0). In the opposite limit αρ, α
′
ρ → ∞

there remains a kinetic term only for the spin–one bosons
whereas ∂µρ

µ can be determined algebraically from the
field equations.

There is only one possible cubic coupling involving two
scalars or pseudoscalars and the vector octet. To lowest
order in a derivative expansion it reads

LΦ2ρ =
i√
2
gρππẐ Tr

[(
∂µΦ

†Φ− Φ†∂µΦ
)
ρ̃µ

L

+
(
∂µΦΦ

† − Φ∂µΦ
†) ρ̃µ

R

]
. (B.4)

The appropriate value of Ẑ will be determined later such
that gρππ appears in the width of the decay ρ → ππ ac-
cording to

Γ (ρ → ππ) =
g2

ρππ

48π

(
M2

ρ − 4M2
π

) 3
2

M2
ρ

. (B.5)

Using the experimental values Γ (ρ → ππ) ' 150 MeV
and Mρ ' 770 MeV this yields

gρππ ' 6.0 . (B.6)

A second coupling appears for the singlets

L′
Φ2ρ =

i

3
g′

ρππ√
2
Ẑ

×Tr
(
∂µΦ

†Φ− Φ†∂µΦ
)
(Tr ρµ

L − Tr ρµ
R) .(B.7)

We note that similarly the couplings of the quarks to the
vector and pseudovector singlets could be different from
the octet couplings leading to a modification of (B.1). In
the following we will neglect for simplicity the differences
between the singlets and octets (i.e., g′

ρππ = gρππ, m′2
ρ =

m2
ρ, α

′
ρ = αρ). Accordingly, we give for the quartic cou-

plings involving two (pseudo)scalars and two (pseudo)vec-
tors only those appearing for the octets and extend them
to the singlets. In contrast to the cubic coupling (B.4) the
lowest order term does not involve derivatives:

LΦ2ρ2 =
1
2
Ẑ
(
g2

ρππ + f1
) (

TrΦ†Φρµ
LρLµ + TrΦΦ†ρµ

RρRµ

)
−Ẑ (g2

ρππ + f2
)
TrΦ†ρµ

RΦρLµ

+Ẑf3
(
TrΦ†Φ− ρ0

)
Tr (ρµ

LρLµ + ρµ
RρRµ) . (B.8)
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Our conventions are such that for f1 = f2 = f3 = 0 the
couplings (B.4), (B.7), (B.8) and an appropriate scalar
kinetic term can be written in terms of a gauge covariant
derivative

DµΦ = ∂µΦ− i√
2
gρππρRµΦ+

i√
2
gρππΦρLµ (B.9)

as Ẑ Tr (DµΦ)† (DµΦ). For gρqq = gρππ this also extends
to the couplings to quarks.

Chiral symmetry breaking by the expectation value of
Φ leads to a mixing between ρµ

L and ρµ
R. In the absence of

quark masses the ρ–mass matrix reads

M
2
V A = (B.10)(
m2

ρ + 2
(
g2

ρππ + f1
)
Ẑσ2

0 , −2
(
g2

ρππ + f2
)
Ẑσ2

0

−2
(
g2

ρππ + f2
)
Ẑσ2

0 , m2
ρ + 2

(
g2

ρππ + f1
)
Ẑσ2

0

)
.

The mass eigenstates are the vector and pseudovector
mesons (and associated scalars)

ρµ
V = 1√

2
(ρµ

R + ρµ
L)

ρµ
A = 1√

2
(ρµ

R − ρµ
L) . (B.11)

They transform under charge conjugation as

ρV
C−→ −ρT

V

ρA
C−→ ρT

A

(B.12)

and we conclude that the transversal parts of ρµ
V and ρµ

A
describe the 1−− and 1++ octets and singlets of the light
meson spectrum. The mass of the vector mesons is given
by

M2
V = m2

ρ + 2 (f1 − f2) Ẑσ2
0 (B.13)

whereas the pseudovector mass reads

M
2
A = m2

ρ + 2
(
2g2

ρππ + f1 + f2
)
Ẑσ2

0 . (B.14)

We have put here a bar on M
2
A in order to indicate that

the relation with physical axialvector masses involves an
additional wave function renormalization

M2
A =

M
2
A

ZA
. (B.15)

In fact, chiral symmetry breaking induces also a difference
in the kinetic terms for ρV and ρA by invariants of the type
TrΦ†Fµν

R ΦFLµν with Fµν
L,R = ∂µρν

L,R−∂νρµ
L,R. Combining

the most general term involving up to two powers of Φ

∆Lkin,ρ =
β1

4
TrΦ†Fµν

R ΦFLµν

+
β2

8
Tr
(
Φ†ΦFµν

L FLµν + ΦΦ†Fµν
R FRµν

)
(B.16)

with (B.2) one finds for the kinetic term relevant for the
spin–one bosons in the limit of vanishing quark masses

Lkin,ρ =
ZV

8
TrFµν

V FV µν +
ZA

8
TrFµν

A FAµν (B.17)

with

ZV = Zρ + (β2 + β1)σ2
0

ZA = Zρ + (β2 − β1)σ2
0 . (B.18)

The wave function renormalization Zρ can be fixed by
convention. If we choose the normalization of ρµ

L,R such
that the kinetic term for ρµ

V has the standard form (ZV =
1) there remains nevertheless an additional parameter ZA

multiplying the kinetic term of ρµ
A which typically differs

from one. Similar effects can influence the effective kinetic
terms for the spin–zero components ∼ ∂µρ

µ.
We observe that for g2

ρππ + f2 > 0 the vector octet
is indeed lighter than the pseudovector octet. For |f2| �
g2

ρππ the mass splitting can be related to the ρππ coupling
and therefore to the ρ lifetime by

M
2
A −M2

V = 4
(
g2

ρππ + f2
)
Ẑσ2

0

=
1
9
(
2fK + fπ

)2
g2

ρππ

Ẑ

Zm
xρ (B.19)

with
xρ = 1 +

f2
g2

ρππ

. (B.20)

The mass splitting within the octet because of nonvan-
ishing quark masses can also be understood from the in-
teractions (B.8) and (B.16) inserting Φ = σ0 + 1

2 (wλ3 −√
3vλ8)Z

−1/2
h . (This can be used to determine the param-

eters appearing in these expressions.)
It is instructive to write the cubic coupling (B.4) in

terms of mass eigenstates by using (4.4):

LΦ2ρ =
i

2
gρππẐ Tr

{
[∂µΦpΦp − Φp∂µΦp

+∂µΦsΦs − Φs∂µΦs] ρ
µ
V + i

[
∂µΦpΦs − Φp∂µΦs

+Φs∂µΦp − ∂µΦsΦp +
2
3

(χs∂µχp − ∂µχsχp)

+
2√
3

(χs∂µΦp − ∂µχsΦp

−χp∂µΦs + ∂µχpΦs)
]
ρµ

A

}

+
√

2gρππẐσ0 Tr
{(

Φp +
1√
3
χp

)
∂µρ

µ
A

}
. (B.21)

We note a mixing of the longitudinal component ∂µρ
µ
A

with the pseudoscalar mesons Φp, χp for σ0 > 0. This is
possible since ∂µρ

µ
A represents a 0−+ state. In contrast,

∂µρ
µ
V transforms as 0+− and a mixing with 0++ states Φs

is possible only for the charged scalars. It is induced by
a nonvanishing expectation value 〈Φs〉. As required by C
and P invariance the vector mesons have cubic couplings
to two pseudoscalars only if those are distinct, e.g. there is
a ρ0π+π− but no ρ0π0π0 coupling. Typical decays of pseu-
dovectors involve the coupling of ρA to one pseudoscalar
and one scalar. Additional cubic couplings involving two
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(pseudo)vectors and one (pseudo)scalar are generated by
(B.8) if σ0 is inserted for one of the fields Φ.

For an estimate of the effective Φ–interactions induced
by the exchange of ρ–fields we have to solve the field equa-
tions for ρµ

V and ρµ
A as functions of Φ. The result is then

inserted into the action thus eliminating ρµ and replacing
it by functions of Φ. We will do so keeping only terms
linear and quadratic in Φ. This is sufficient for invariants
containing up to four powers of Φ. For the contributions
from the quartic term (B.8) we keep only the lowest order
Φ = diag(σ0), i.e. we neglect the mass splitting within the
octets. The resulting field equations for ρµ

V and ρµ
A are

(
−∂ν∂νδ

σ
µ +

(
1 − 1

αρ

)
∂σ∂µ +M2

V δ
σ
µ

)
ρab

V,σ

= −igρππẐ
(
∂µΦ

†Φ− Φ†∂µΦ

+∂µΦΦ
† − Φ∂µΦ

†
)ab

(
−∂ν∂νδ

σ
µ +

(
1 − 1

αρ

)
∂σ∂µ +M

2
Aδ

σ
µ

)
ρab

A,σ

= igρππẐ
(
∂µΦ

†Φ− Φ†∂µΦ

−∂µΦΦ
† + Φ∂µΦ

†
)ab

(B.22)

If we omit first effects from chiral symmetry breaking one
has M2

V = M
2
A = m2

ρ. Inserting (B.22) into (B.2) and
(B.4) and keeping only terms involving up to two deriva-
tives, the vector and pseudovector mesons contribute to
the kinetic term (4.6) only a structure

X−(ρ)
ϕ = −4g2

ρππẐ
2

m2
ρ

. (B.23)

For σ0 > 0 the SUL(3) × SUR(3) symmetry is spon-
taneously broken. The effective interactions mediated by
ρV and ρA still preserve the vector–like SU(3) symmetry
if quark mass effects are neglected. In this approxima-
tion it is most convenient to give directly the contribu-
tion from ρ–exchange to the wave function renormaliza-
tion constants Zm, Zp, Zh and Zs as well as ωm, ωpm and
ωh. They can be read off from (B.21)

Z
(ρ)
m = Z

(ρ)
p = − 4g2

ρππ

M
2
A

Ẑ2σ2
0

Z
(ρ)
h = Z

(ρ)
s = ω

(ρ)
h = 0

ω
(ρ)
m = − 4g2

ρππ

M
2
A

Ẑ2

Z
1
2

h
Zm

σ0

ω
(ρ)
pm = − 8√

6

g2
ρππ

M
2
A

Ẑ2

(ZhZmZp)
1
2
σ0 .

(B.24)

This yields the same expressions as inserting (B.23) into
(8.10) if m2

ρ is replaced by M
2
A. Indeed, to linear order

in the quark masses there is no contribution to the wave
function renormalization constants from the exchange of
the vector field ρµ

V . Only the exchange of the spin–zero
component ∂µρ

µ
A induces the corrections (B.24). This can

easily be understood from the structure of the interac-
tions (B.21). Possible contributions to the quadratic terms
defining Zm, Zh, ωm etc. can only arise through terms in
the field equations for ρ which are linear in Φ − 〈Φ〉. By
Lorentz–invariance such terms must be ∼ ∫

d4x∂µΦρ
µ ∼∫

d4x(Φ − 〈Φ〉)∂µρ
µ. The discrete symmetries C and P

allow to this order only a term ∼ Φp∂µρ
µ
A which corre-

sponds to the mixing of the 0−+ states and a structure
∼ [Φs − 〈Φs〉 , 〈Φs〉] ∂µρ

µ
V for the mixing in the scalar sec-

tor. The mixing in the pseudoscalar sector receives con-
tributions ∼ σ0, v and therefore contributes to the terms
in (B.24). In contrast, the mixing in the scalar sector van-
ishes for v = 0 and gives therefore only a correction (11.2)
to the scalar kinetic terms which is quadratic in v

ζ
(ρ)
h =

1
4
Ẑ2

Z2
h

g2
ρππ

M2
V

. (B.25)

The contribution to Z(ρ)
m (B.24) is known as the “par-

tial Higgs effect”. Inserting (B.14) for M
2
A one finds for

f1 = f2 = 0 and Ẑ = Zϕ

Zm = Zϕ + Z(ρ)
m = Zϕ

m2
ρ

M
2
A

(B.26)

and observes that Zm vanishes for m2
ρ → 0. In this limit

the symmetry SUL(3) × SUR(3) becomes an exact lo-
cal gauge symmetry. As a result of the Higgs effect the
pseudoscalar octet disappears from the spectrum. What
remains are massive pseudovector mesons which acquire
their mass through spontaneous symmetry breaking of the
axial SUA(3) by σ0 6= 0. In the real world, however, the lo-
cal gauge symmetry is explicitly broken by the mass term
m2

ρ and by the deviation of f1 and f2 from zero. Below
we will take Ẑ different from Zϕ and this again violates
local SUL(3) × SUR(3) symmetry and modifies (B.26).
The partial Higgs effect corresponds to the mixing be-
tween the two 0−+ octet states contained in Φp and ∂µρ

µ
A.

We may further improve the estimate (B.24) by taking
into account the contributions ∼ q2 on the left hand side
of (B.22). The propagator of the divergence of ρµ

A differs
from the one for the pseudovector mesons, since the ki-
netic term is given by the “gauge fixing” term ∼ 1

αρ
in

(B.2). (There are similar differences in higher order in the
momentum q2 and in contributions to the kinetic terms
from chiral symmetry breaking.) The expression for M

2
A

appropriate in (B.24) should involve the inverse propaga-
tor for the longitudinal component of ρµ

A, ZP q
2 + M

2
A,

where to lowest order ZP = α−1
ρ . It should be taken at a

momentum scale corresponding to the light pseudoscalar
octet masses, q20 = −m2

m. We also define a renormalized
mass parameter

M2
P = M

2
A/ZP . (B.27)

Inserting this into (B.24) yields the relation

(
Zh

Zm

) 1
2

ω(ρ)
m

(
2fK + fπ

)
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= −2
3

g2
ρππ

M
2
A − ZPm2

m

(
2fK + fπ

)2 Ẑ2

Z2
m

= − 6
xρ

Ẑ

Zm

M2
A −M2

V /ZA

M2
A −m2

mZP /ZA
(B.28)

where we used (B.19) for the last equation. We note that
unless ZP /ZA = M2

A/M
2
P is very large the precise value

of ZP has only little influence. In fact, we will see that
ZP /ZA <∼ 0.35 (cf. Table 9). The average masses of the
vectors and pseudovectors are given by (Mρ = 770 MeV,
MK∗ = 892 MeV, Ma1 = 1230 MeV, MK1 = 1340 MeV)

M2
V = 2

3M
2
K∗ + 1

3M
2
ρ ' (853 MeV)2

M2
A = 2

3M
2
K1

+ 1
3M

2
a1

' (1300 MeV)2 . (B.29)

This leads to a quantitative estimate for the ρ–exchange
contribution to ωmv

ω(ρ)
m v = − 4

xρ

Ẑ

Zm

(fK − fπ)
(2fK + fπ)

(
1 −M2

V /M
2
A

)
(1 −m2

m/M
2
P )

×
[
1 − M2

V

M2
A −M2

V

(
1
ZA

− 1
)]

' −0.28
xρ

Ẑ

Zm

[
1 − 0.75

(
1
ZA

− 1
)]

(B.30)

where in the last step we have neglected the weak depen-
dence on M2

P . At this stage we see already that a typical
order of magnitude for ω(ρ)

m v is around −0.2 which is quite
close to what is needed to explain fη and fη′ (see Sect. 9).

For a more detailed estimate we have to determine the
appropriate choice of Ẑ. After elimination of ρµ

A by solv-
ing its fields equation the relevant terms in the effective
interaction for Φ and ρV are

LΦV = Zm Tr(∂µΦ)†∂µΦ+
i

2
gρππẐ

×Tr
[(
∂µΦ

†Φ− Φ†∂µΦ+ ∂µΦΦ
† − Φ∂µΦ

†) ρµ
V

]
.

(B.31)

As a result of the partial Higgs effect we notice (B.24) the
appearance of

Zm = Zϕ − 4g2
ρππ

σ2
0

M
2
A − ZPm2

m

Ẑ2 (B.32)

instead of23 Zϕ in front of the kinetic term for Φ. Within
the lowest order derivative approximation employed here
we therefore have to identify

Ẑ = Zm (B.33)

in order to get the standard coupling of ρV to the renor-
malized scalar field. Indeed, the lowest order ρππ interac-
tion now takes the form

Lρππ = gρππεijkπj∂µπkρ
µ
i

= −2igρππρ
µ
3π

+∂µπ
− + . . . (B.34)

23 More precisely, Zϕ stands in this appendix for Zϕ +Uϕσ0+
X̃−

ϕ σ2
0 where X̃−

ϕ is the part of X−
ϕ which is unrelated to “ρ–

exchange”

Table 9. The table gives the “leading mixing” results for vari-
ous parameters related to η–η′ mixing. Only in the last line we
use a fixed value Zp/Zm = 0.9 corresponding to a nonvanishing
Uϕ in (8.10)

xρ
Zp

Zm
ZA

MA
MeV ZP

MP
MeV

M0
MeV ω

(ρ)
m v Zm/Zϕ δ

(ρ)
ω

1.0 1.00 0.67 1068 0.00 – – −0.14 0.73 0.00
0.8 0.99 0.62 1030 0.22 2196 1852 −0.17 0.71 0.08
1.0 0.99 0.67 1069 0.22 2278 1944 −0.15 0.73 0.07
1.2 0.99 0.72 1106 0.22 2358 2031 −0.14 0.74 0.07
1.0 0.9 0.67 1069 0.16 2673 2282 −0.15 0.73 0.05

as can be seen by inserting ρµ
V = ρµ

i τi, Φ = 1
2Z

−1/2
m fπ

exp
(
iπkτk

fπ

)
, i, j, k = 1, 2, 3. With the choice (B.33) the

interactions (B.4), (B.7) can be combined for f1 = f2 = 0
into a covariant kinetic term for Φ

L′
ΦV = Zm Tr (DµΦ)† (DµΦ)

DµΦ = ∂µΦ− i

2
gρππ [ρV µ, Φ] . (B.35)

We observe in passing that because of the violation of
gauge symmetry by the mass term ∼ m2

ρρ
µ
AρAµ one cannot

have simultaneously local gauge invariance of the interac-
tion terms with respect to SUL(3)×SUR(3) (correspond-
ing to Ẑ = Zϕ) and the vector–like subgroup SUV (3)
after spontaneous symmetry breaking (corresponding to
Ẑ = Zm). We could, of course, replace in (B.4) gρππZm =
ĝρππZϕ. The quartic interactions (B.8), however, would

then be proportional to Zmg
2
ρππ = Zϕĝ

2
ρππ

(
1 + Zϕ−Zm

Zm

)
.

In this normalization (B.35) corresponds to nonvanish-
ing f̂1 = f̂2 = Zϕ−Zm

Zm
and a different normalization of

the gauge coupling. We will consider here the case of ap-
proximate SUV (3) gauge symmetry (B.35) in contrast to
part of the literature where the choice Ẑ = Zϕ is adopted
while f̂1 and f̂2 are neglected. In our case, the interac-
tion terms are only invariant with respect to global chiral
SUL(3) × SUR(3) transformations. Local SUV (3) invari-
ance arises effectively only after chiral symmetry breaking
if the symmetry breaking terms m2

ρ, fi, etc. are neglected.
The wave function renormalization ZA can be evalu-

ated from the average mass of the pseudovector mesons
(B.19)

ZA =
M2

V + 4g2
ρππσ

2
0xρ

M2
A

. (B.36)

If we neglect the weak dependence of ω(ρ)
m v on ZP , (B.30),

(B.33) and (B.36) are already sufficient to compute ω(ρ)
m v

as a function of xρ. For a more accurate estimate we have
to determine ZP or MP which will be done in Appendix C
(cf. (C.5)). This allows to determine ZA, MA, ZP , MP

and ω
(ρ)
m v for given xρ. The results are displayed in Ta-

ble 9 for different values of xρ and M0 (cf. Appendix C).
The first five lines are evaluated in the leading mixing ap-
proximation as described in the end of Sect. 12. The last
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line assumes in addition Uϕ 6= 0 in (8.10) and corresponds
to line (d) in Sect. 13. The main uncertainties in ω

(ρ)
m v

arise from xρ 6= 1 and from possible higher derivative con-
tributions to the decay ρ → ππ which would modify the
value of gρππ. In addition, there are also corrections from
the mass splitting in the vector– and pseudovector octets.
The latter are suppressed by an additional power of quark
masses. We believe that the values for Zm/Zϕ in Table 9
give a rather realistic estimate for the quantitative im-
portance of the “partial Higgs effect”. For the values in
Table 9 we have assumed ωm = ω

(ρ)
m for the computation

of fK − fπ, σ0, etc. If we use instead the values of line (b)
in Table 4, ω(ρ)

m v typically decreases by 0.02 thus reaching
values close to −0.2. In conclusion, typical values for ω(ρ)

m v
are in the range between −0.14 and −0.17. This coincides
more or less with the values needed for an explanation
of the observed decay constants fη and fη′ ! We also note
that the partial Higgs effect reflected in the deviation of
Zm/Zϕ from one leads typically to a 30% correction in the
kinetic terms.

Let us finally turn to the size of the mixing effects in
the scalar sector parameterized by ζh (B.25). Despite their
suppression by a factor ∼ v2 they may be quantitatively
relevant because the propagator of the exchanged quan-
tum now involves the mass of the vector instead of the
axialvector mesons. Since this mixing concerns only the
K∗

0 mesons (cf. (11.2)) we use for a quantitative estimate
of ζh the mass MK∗ = 892 MeV and replace in (B.25) M2

V

by M2
K∗ + Z̃P q

2
0 = M2

K∗ − Z̃PM
2
K∗

o
. (Here Z̃P differs from

ZP by contribution ∼ σ2
0 similar to (B.16)). This implies

ζ
(ρ)
h v2 =

1
9
Zm

Zh

(
gρππ(fK − fπ)

MK∗

)2(
1 − Z̃P

M2
K∗

o

M2
K∗

)−1

' 0.0185
1 − 2.57Z̃P

(B.37)

and we note that this formula is not applicable for Z̃P

around 0.4. ThereM2
K∗/Z̃P is of the same size asM2

K∗
o

and
the mixing of states cannot be described by a derivative
expansion anymore (cf. Appendix C). Also the imaginary
part of the propagators of unstable particles have to be
taken into account. Because of the uncertainty in the value
of Z̃P it is difficult to give a precise quantitative estimate
of ζ(ρ)

h v2. We only know that this quantity is positive and
exceeds the value for ZP = 0. This leads to the estimate
ζhv

2 >∼ 0.02.
We conclude that the “classical” exchange of spin one

mesons only contributes to the effective quartic (and higher)
interactions of the pseudoscalars but does not modify their
effective propagators. They are therefore not relevant for
the investigations of the present work which concentrate
on masses and mixings. The only contributions from higher
states to the propagators concern the mixing with higher
0−+ states for Φp and χp and additional scalar states for
Φs. Such states are contained in ∂µρ

µ
A and ∂µρ

µ
V . These

mixings contribute to quantities like X−
ϕ , Zh/Zm etc. A

brief general discussion of mixing effects is given in Ap-
pendix C.

C Mixing with other states

In QCD the pseudoscalar and scalar mesons described by
the field Φ are only part of a rich spectrum of quark–
antiquark states plus glueballs and possibly also qqqq
states. There are strong couplings between the various
states and their physics therefore influences the behav-
ior of the 0−+ and 0++ particles described in this work.
On the level of effective propagators which are the main
subject of this paper we have to consider mixing effects
with other 0−+ or 0++ states in the spectrum. For the
pseudoscalar octet this concerns only the higher mass 0−+

octets, whereas for the scalar octet we also have to con-
sider the possible mixing with qqqq states in the 0++ chan-
nel. We mention that it is not crucial in this context if the
two–meson or four–quark states (with qqqq quantum num-
bers) correspond to “particles” like the a0(980), f0(980)
or not — the composite fields describing the qqqq states
may also have “propagators” without a pole. Finally, for
the pseudoscalar η′ we also have to include a mixing with
pseudoscalar glueballs. We collectively denote these addi-
tional resonances as “higher states”.

The general method for dealing with the higher states
is to integrate them out and to compute an effective the-
ory for Φ alone. The investigations of this paper should
be understood in this context. There are various methods
for integrating out the higher states. One consists in com-
puting first the effective action including additional fields
for the higher states. In a second step the field equations
for these states are solved for arbitrary values of Φ. The
resulting “classical fields” are functionals of Φ and can be
reinserted into the effective action, thus leading to an ef-
fective action which depends only on Φ. The discussion in
Appendix B can serve as an example. For those results
of the present paper which are only based on symmetries
it is actually not necessary to perform the integration of
additional fields in practice. Nevertheless, some insight in
the origin of some of the constants of the effective ac-
tion, like X−

ϕ , Ṽϕ etc., can be gained by considering the
possible form of the effective action including additional
states. We should point out that we neglect throughout
the imaginary part of the two–point functions which is
due to the decay of unstable resonances. This approxima-
tion may become invalid in the immediate vicinity of poles
in the propagators.

We have already encountered the mixing of 0−+ states
in the discussion of the longitudinal component of ρµ

A in
Appendix B. Let us rephrase this with a somewhat differ-
ent perspective by introducing a field

τP = ∂νρ
ν
A − 1

3
Tr ∂νρ

ν
A (C.1)

for the additional 0−+ state. With this normalization the
propagator for τP can be approximated by q2GP (q2) with
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G−1
P = ZP q

2 + M
2
A (cf. Appendix B). The inverse prop-

agator for the coupled system of
√

2Φp and τP contains
off–diagonal terms

G−1(q) =
(
G−1

ϕ (q) , G−1
ϕP (q)

G−1
Pϕ(q) , G−1

P (q)/q2

)
(C.2)

which are responsible for the mixing. From (B.21) one
finds

G−1
ϕP (q) = G−1

Pϕ(q) = 2gρππZmσ0 . (C.3)

A similar mixing occurs between χp and the singlet τ ′
P

contained in Tr ∂µρ
µ
A. It is no accident that the mixing

vanishes for σ0 = 0 or q2 = 0: In the limit of unbroken
chiral symmetry (σ0 = 0) the fields Φ and ρ belong to
different representations of SUL(3) × SUR(3) and cannot
mix. Also for σ0 6= 0 and vanishing quark masses Φp de-
scribes Goldstone bosons which can only have derivative
couplings. By construction the quark mass terms only ap-
pear as source terms for Φ.

It is equivalent to diagonalize the matrix (C.2) or to
eliminate τP by solving its field equations for τP [Φ] which
is more adapted to our purpose. The elimination of τP
gives an additional contribution to the effective inverse
propagator G−1

ϕ (q) +∆G−1
ϕ (q), namely

∆G−1
ϕ (q) = −G−2

ϕP (q)GP (q)q2 . (C.4)

There are also contributions to the off–diagonal m− p ki-
netic term related to η–η′ mixing which are represented
graphically in Fig. 9. From an investigation ofG−1

ϕ +∆G−1
ϕ

we can obtain some general insight in the structure of mix-
ing effects. First, we observe that for G−1

ϕ = Zϕq
2 + M

2

the effective propagator G = (G−1
ϕ + ∆G−1

ϕ )−1 typically
has two poles corresponding to the values of q2 for which
the determinant of G−1(q) vanishes. In the vicinity of the
lower mass pole G−1

ϕ + ∆G−1
ϕ can be approximated by

a typical one particle two point function. The propaga-
tor vanishes at the value q2 = −M2

P where G−1
P (q) has

a zero. One observes that due to the particular factor of
(q2)−1 in the inverse τP propagator (C.2) the value of MP

is always larger than both masses corresponding to the lo-
cation of the poles24. In addition, the residue of G at the
pole with the higher value of −q2 has the opposite sign as
for the lower mass pole. (The higher mass pole does not
correspond to a stable particle even within our approxi-
mations.) If we denote by q2 = −M2

0 the location of the
higher pole one finds with (C.3) and M

2
= m2

mZm

M2
P = M

2
A/ZP (C.5)

= M2
0

[
1 + 4g2

ρππσ
2
0

1
ZP

Zm

Zϕ

(
M2

0 −m2
m

Zm

Zϕ

)−1
]
.

An estimate of M0 is not obvious and subject to large un-
certainties. One can then determine Zϕ/Zm from (B.32),

24 Without the (q2)−1 factor M2
P would be inbetween the two

poles

Fig. 9. Feynman diagrams contributing to η–η′ mixing due to
exchange of ∂µρµ

A

(B.33) and solve the resulting system of equations in de-
pendence on ZP . Results are displayed in Table 9 for val-
ues of ZP in a range for which Mη comes out with a rea-
sonable size in the leading mixing approximation (Fig. 8).
We note that much larger values of ZP lead to a very large
mixing in the η–η′ sector and completely destroy any rea-
sonable picture. We also show in Table 9 three different
values of xρ.

Second, it is clear that for real octet or singlet fields the
off–diagonal elements must be real and equal. Integrating
out the additional fields gives a negative contribution to
the coefficient ∼ q2 in the quadratic term for Φ − 〈Φ〉 as
long as GP (q) stays positive. The mixing gives therefore
a negative contribution to Zm (8.10) and explains why
X−

ϕ is negative. Third, from (C.4) we learn that the mix-
ing effects are proportional to the propagator GP . This
suggests that mixing effects with light additional states
are particularly important. Fourth, the mixing effects also
contribute to higher derivative terms in the effective ac-
tion for Φ. Expanding GP (q) around q20 gives

∆G−1
ϕ = −4

g2
ρππZ

2
mσ

2
0

M
2
A + ZP q20

q2

[
1 − ZP

(
q2 − q20

)
M

2
A + ZP q20

]
(C.6)

where the first term corresponds to Z
(ρ)
m q2 as given by

(B.24). Comparing with (6.12) and using (B.24) we find a
contribution

H
(ρ)
m = −1

4
ω(ρ)

m v
2fK + fπ

fK − fπ

1
M2

P −m2
m

. (C.7)

The momentum dependence from the effective propa-
gator GP may be particularly important for the η′ since its
mass is closest to M2

P . The resulting q2–dependence of the
quantities appearing in (6.26) has therefore to be treated
with care. We remark that typical masses in the neutral
sector are higher than in the flavored one and therefore
guess MP around 2000 MeV with a large uncertainty. In
terms of the unrenormalized fields the inverse propagator
in the flavor neutral sector takes on the form([
Zϕ +X−

ϕ (q2)σ2
0
]
q2 +M2

pZp,
[
ω̂(q2)q2 +M2

8p

]
Z

1/2
m Z

1/2
p[

ω̂(q2)q2 +M2
8p

]
Z

1/2
m Z

1/2
p ,

[
Zϕ +X−

ϕ (q2)σ2
0
]
q2 +M

2
8

)
.

(C.8)

Here we assume that the nontrivial momentum depen-
dence beyond the approximation linear in q2 arises dom-
inantly from propagator effects contained in X−

ϕ (q2) and
ω̂(q2) according to

X−
ϕ (q2) = X−

ϕ (−m2
m)

(
M2

P −m2
m

)
(M2

P + q2)
(C.9)
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ω̂(q2) = ω̂(−M2
η )fω(q2) , fω(q2) =

M2
P −M2

η

M2
P + q2

.

Our conventions imply

ω̂ = ω̂(−M2
η )

X−
ϕ = X−

ϕ (−m2
m) (C.10)

and we remind that we have defined both, Zp and Z8, for
q2 = −M2

η . The leading mixing approximation implies

Zm = Zϕ +X−
ϕ (−m2

m)σ2
0

ZmZ8 = Zp = Zϕ +X−
ϕ (−M2

η )σ2
0 . (C.11)

With this definition the only higher derivative effect in
the matrix (6.26) for q2 = −M2

η appears in the factor
f−1

ω (−m2
m) = (M2

P − m2
m)/(M2

P − M2
η ) = 1.02, (6.33).

Here we have used the estimate MP = 2670 MeV from
Table 9. Also the resulting deviation of Zp/Zm from unity
is small

Zp

Zm
= Z8 =

Zϕ +X−
ϕ (−M2

η )σ2
0

Zϕ +X−
ϕ (−m2

m)σ2
0

= 1 +
[
X−

ϕ (−M2
η ) −X−

ϕ

]
σ2

0

= 1 +
1
4
ωmv

(2fK + fπ)
(fK − fπ)

(M2
η −m2

m)
(M2

P −M2
η )

' 1 + 0.05ωmv (C.12)

and compatible with the linearization for Z8 according to
(C.7). (The numerical value for ωmv = −0.20 is Zp/Zm =
0.99.) There is no modification of the decay constants fη8
and fη0, (A.24), (A.25). On the other hand, the propaga-
tor effect in X−

ϕ (q2) and ω̂(q2) could lead to substantial
effects for q2 = −M2

η′ depending on the value of MP : In
the diagonal elements of the inverse propagator (6.26) one
has to insert

zp(q2) = z8(q2) =
Zϕ +X−

ϕ (q2)σ2
0

Zϕ +X−
ϕ (−M2

η )σ2
0

=

(
1 − 1

4ωmv
(2fK+fπ)
(fK−fπ)

(q2+m2
m)

(q2+M2
P

)

)
(
1 + 1

4ωmv
(2fK+fπ)
(fK−fπ)

(M2
η−m2

m)
(M2

P
−M2

η)

) (C.13)

whereas ω̂ is replaced by ω̂(q2) (6.33), (C.9). Furthermore,
the correct definition of the decay constants fη′0 and fη′8
involves now the factor (A.26)

z̃p(−M2
η′) = zp(−M2

η′) . (C.14)

For the scalar octet an interesting possibility of mix-
ing concerns states in the two–meson channels. In fact,
the four–point function for Φp may develop resonance–like
structures in the momentum range corresponding to the
sum of two pseudoscalar meson masses. (These momen-
tum dependent structures are not accounted for by the
four–point function at zero external momenta described
by the effective potential U .) Such resonance structures

can be replaced by effective interactions with a composite
0++ field τS . The effective two–point functions for τS ob-
tained in this way do not necessarily correspond to a prop-
agating particle or resonance, since their real part may be
strictly positive and bounded for all values of q2 on the
real axis. Consider a generic structure for the mixing be-
tween

√
2Φs and τS

G−1(q) =
(
Zq2 +M

2
, b(q2)

b(q2) , c(q2)

)
. (C.15)

If c(q2) has a zero for
√

−q2 in the vicinity of the sum
of two pseudoscalar masses one finds two values of q2 for
which an eigenvalue of G−1 vanishes. In the case of the
isospin triplet they could be associated with a0(980) and
a0(1320). On the other hand, the two–particle threshold
could also be reflected by a finite enhancement of c(q)−1 or
b(q) without a zero of c(q). If c(q2) dips in this momentum
region to values smaller than b2(q2)/(M

2
+ Zq2) the zero

eigenvalue of G−1 will occur precisely in the threshold re-
gion, namely for q2 = −M2

0 as determined by c(−M2
0 ) =

b2(−M2
0 )(M

2−ZM2
0 )−1. After solving for τS [Φs] the loca-

tion of the single pole of [G−1
ϕ (q)−b2(q2)c−1(q2)]−1 would

then necessarily be found at −M2
0 in the threshold region.

For M
2
/Z not too far from the two–particle threshold this

effect could explain naturally why the isotriplet in Φs is
found precisely at the 2K threshold! Mixing effects from
∆G−1

ϕ = −b2(q2)c−1(q2) are large in this case. Since this
mechanism requires a critical strength for b2c−1 not all
members of the scalar octet have to be in the vicinity of
two–particle thresholds. More precisely, the phenomenon
of “threshold mass shifting” which induces mesons masses
near a two–particle threshold occurs whenever M

2
/Z is

above the threshold and the quantity b2(q)/(c(q)Z(q))
makes a strong enough jump in the threshold region. An
alternative way of looking at this “threshold mass shift-
ing” notes that the loop contribution to the two–point
function for the a0 becomes important if the mass is close
to the sum of the masses of the two pseudoscalars circu-
lating in the loop.

Even without a detailed discussion of the complicated
analyticity properties we conclude that for both alterna-
tives the effective inverse propagator for the isotriplet in
Φs should have a zero at the observed a0(980) resonance.
In this momentum region the mixing effects with two–
kaon states are expected to be very strong. No detailed
understanding of the properties of the a0(980) seems pos-
sible without incorporating the two–kaon channel. In ad-
dition, the effective inverse propagator may (or may not)
have a second zero corresponding to the possible reso-
nance a0(1320). In this momentum region the mixing ef-
fects should be much smaller because of the larger value
of Zq2 + M

2 − c(q). We note that both resonances are
described by the same value of25 M

2
, but different ef-

fective Zh and ωh. The two different associations a0(980)

25 It is convenient to choose composite fields such that c(0) =
0
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vs. a0(1320) in the main text become in this case only two
facets of the same story. If the a0(1320) exists the values
characterizing the potential, like m2

h, λ2, λ3, etc. should
be independent of the identification of the isotriplet. The
actual differences in these values are then a measure for
the influence of neglected terms. We find that these dif-
ferences can indeed be small if the mixing is large enough
for the a0(980). This is compatible with the existence of
the a0(1320) as a real resonance.

Finally, we turn to the mixing of a pseudoscalar 0−+

glueball g with the η′. This is particularly interesting in
view of a possible experimental detection of g. Because of
the anomaly the η′ is not a Goldstone boson for vanishing
quark masses and the off–diagonal element in the mixing
matrix may not vanish for zero momentum. We introduce
for the glueball a pseudoscalar singlet field g with an ef-
fective action

Lg =
1
2
∂µg∂µg +

1
2
m2

glg
2 + hglωg

ω = i
(
detΦ− detΦ†) . (C.16)

The coupling between Φ and g conserves all symmetries
(P(g) = −g, C(g) = g). The real coupling hgl may de-
pend on the momentum of g. Expanding hgl(q) around
q20 = −m2

m the mixing with the glueball contributes to
the effective potential for Φ (cf. 4.8)

U (g)[Φ] = −1
2
h2

gl(q0)
[
m2

gl + q20
]−1

ω2 (C.17)

whereas for the kinetic term (4.6) it induces a coupling

Ṽ (g)
ϕ = h2

gl(q0)
[
m2

gl + q20
]−2 − ∂h2

gl

∂q2
(q0)

[
m2

gl + q20
]−1

.

(C.18)

It is probably difficult to disentangle (C.17) from other
contributions to the potential. On the other hand, a de-
termination of the size of the parameter Ṽϕ will put re-
strictions on hgl. Since hgl is directly related to the mixing
between η′ and g one may obtain from it interesting in-
formation on the decay of the pseudoscalar glueball into
mesons or photons. To lowest order we can use

ω = −
√

6σ2
0Z

− 1
2

p p (C.19)

and obtain the inverse propagator for the η′–glueball sys-
tem as

G−1(q) ' (C.20)(
q2 +m2

p , −
√

6
2 Z

− 1
2

p Z−1
m σ2

0hgl

−
√

6
2 Z

− 1
2

p Z−1
m σ2

0hgl , q2 +m2
gl

)
.

For not too large hgl the mixing angle between g and η′
is suppressed by the small ratio σ0/mgl

−ϑgl ' hgl
σ2

0

m2
gl −m2

p

' 10−3 hgl . (C.21)
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